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Enhanced diffusion in smoothly modulated superlattices
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We investigate a superdiffusive behavior found in a quasiclassical model of a square-planar superlattice
subjected to a perpendicular magnetic field. It is shown that certain accelerated domains are responsible for
long trapping of tracers and setting them into near-ballistic motion. The mechanism of entrapment appears to
be two-staged and multifractal. Relatively short trapping occurs in the vicinity of homoclinic tangles, created
by intersections of stable and unstable manifolds of a hyperbolic fixed point, connected to itself. A structure of
the quasitrap reveals families of multipulse solutions, doubly asymptotic to slow manifolds. The existence of
orbits of this type was proveflG. Haller and S. Wiggins, Arch. Rational Mech. AnaB0, 25 (1995] for
integrable two-degree-of-freedom Hamiltonian systems with perturbation. We describe mixing dynamics in
this region and examine characteristic escape time scales. More prolonged quasitrapping is due to sticking to
resonant multilayered island chains that are found to accelerate ballistic transport. Phase-space dynamics is
analyzed. We successfully employ a renewal process formalism to relate Poincare recurrences and coordinate
variance asymptotics for both quasitraps and also justify the use of this formalism for the specific case of
gradually increasing average velocity.
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[. INTRODUCTION the chaotic sea which also shows structure, reflecting the

presence of nonlinear resonances. It has long been known,

In the last decade significant attention was brought to théut not well understood, that boundaries of domains of regu-
investigation of so-called commensurability effects found inlar motion can be “sticky,” meaning that chaotic trajectories

lateral surface superlatticésSSL's) subjected to a magnetic ¢an exhibit long stays near the boundaries in a narrow strip

field [1]. Commensurability appears in the interplay of Su_caIIed the boundary layer. Chaotic trajectories, trapped in the

- . - . layer, perform nearly regular motion for a long time, and
perlattice period and Larmor radius. Other important param-h3l/JS d%pending on %/he tg)]ehavior of regular dor?(ah;cilla-
e_ters are the naturg, geomeiry, and shape of lattice modul ory, accelerator, etg. contribute to sub- or superdiffusive
tion as well as the time dependence and the geometry of t otion
magnetic field. The interest to surface superlattices origi- '

L X . e In this paper we consider the model of a 2DEG strongly
nates, primarily, from their nonlinear and nontrivial response,:.’mootmy modulated superlattice. We study an evolution of

to the applied magnetic field. Several interesting phenomengapping structures within a chaotic sea and properties of
were observed[2,3], in particular, commensurability or their houndaries. Our results clearly demonstrate how a small
Weiss oscillations of the longitudinal magnetoresistanceyariation of the model parameters can drastically change the
found in bidirectionally(2DEG) strongly modulated super- pattern of chaotic electronic motion and how this change
lattices[4]. Peaks in the magnetoresistance appeared for speranslates into the variation of macrotransport characteristics.
cific strengths of the magnetic field that would have caused Our second goal is to present further analysis of a trap-
unperturbed electrons to move along classical collision-fre@sing mechanism which is realized in two-dimensional
orbits encircling 1,2,4... dots. Initially suggested Hamiltonian systems and which is a plausible cause of the
“pinned” mechanism, which is well suited for the billiard stickiness in resonant domains.

model of reflecting disks, described experimental results In a number of recent publicatiofg—9] it was suggested
quite closely. Two major flaws of this mechanism, noted inthat at least in some cases the stickiness of a boundary layer
[5], are the assumption that circular cyclotron orbits do notis due to its specific substructure consisting of higher-order
respond to an electric field used to measure resistivity, aneesonant islands surrounded by chaotic manifolds which con-
the failure to explain an additional peak in magnetoresistancaect fixed or periodic hyperbolic points. One example of a
which could not be associated with a collision-free orbit.domain with such a structure of the boundary layer is an
This peak becomes predominant in samples of smaller elegslands-around-island hierarchy studied #9—-12. Most of

tron densities. Later experiments on antidot LSS[B$re- its trapping time a tracer resides in the vicinity of the mani-
vealed additional complexities in the behavior of the magnefold that encircles a particular generation of islands. Trans-
toresistance. More peaks of varying intensity were observedport across the hierarchy is realized as a sequence of jumps
actual positions of peaks associated with collision-free orbitbetween intersecting turnstiles that belong to manifolds of
did not coincide with predicted ones. Having studied electromeighboring generations. A similar scenario is observed in
motion in phase spacex(y,v,,v,) by means of Poincare the case of trapping on a resonant multilayered island chains:
surfaces of section, the authdis| concluded that peaks in manifolds now encircle different island layers, not genera-
magnetoresistance mainly are caused not by the varyintjons.

number of pinnedregula) orbits within Kolmogorov, Ar- The tracer dynamics within different types of chaotic hy-
nold, and MosefKAM ) domains, but by correlations within perbolic manifold has been intensively studied in one-
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dimensional(1D) area preserving systems with a perturba- Il. MODEL HAMILTONIAN

tion (also known as % systems [7,8,13; few results are From the quantum-mechanical point of view, electrons
known for higher dimensional systerfis4]. We were able to  moving in a two-dimensional periodic potential with a
thoroughly analyze the chaotic dynamics in the vicinity of square unit cell and subjected to a we&ak strong magnetic
homoclinic tangles of 2D hyperbolic manifold. More impor- field perpendicular to the plane of lattice, can be described
tantly, the obtained results do not depend on the choice of by a tight-binding Harper modgR0], which is valid in the
particular model. Indeed, for any two-dimensional Hamil-one-band approximation. The spectrum of Harper's model
tonian one of the angular variables is slow in the vicinity ofwas first computed by Hofstadt¢21] and is commonly
a hyperbolic manifold. By a symplectic change of variablesknown as a Hofstadter butterfly. However, in the regime
the Hamiltonian can be reduced to the resonant normal forriwhere the potentials of the magnetic field and the lattice are
which, for two degrees of freedom, is integrable. One carPf comparable strength, the one-band approximation is not
reduce it to a system with one degree of freedom dependin¥@lid due to the coupling of Landau levels. The modified
on the constant value of the first integral as a parameter argP€ctrum that accounts for coupling was recently computed
then draw phase portraits. For a given resonance there affé [22]; and was shown to approach a continuous classical
only finitely many types of phase portrait5], and these Mit, i.€., many gaps are closed, Landau bands are merged
types can be distinguished through the lowest-order terms iﬁnd even weak dlsord(_ar br_oademng, estmated in the self-
the normal form. The phase portraits are qualitatively distincFonSIStent Bo.rn approximation, will clo_se S.t'” Open gaps.
only for finitely many resonances. This allows us to extend The result is not surprising. Modula}tlon—|nduc¢d broadelj—
L N . ing of the Landau levels results in their overlapping, and this
the applicability of our observations to systems with the

foh it and di d bel effect is known as magnetic breakdown. Magnetic break-
same type of phase portrait and, as discussed below, to SOMBwn allows electron transitions between states with differ-

other 2D near-resongnt systems. ent wave vectors that destroy both Bragg interference effects
The paper also discusses the problem of an adequate King size quantization within potential well regions. This jus-

netic description for thentermittentmotion found in systems  ifies the choice of a classical Hamiltonian for the regime of
with a sticky domain. Stickiness manifests itself in the slowstrong coupling:

polynomial decay of the number of particles in a bounded

chaotic region of phase space that includes a sticky boundary 1 2

+

eB 2

Px+ 7)’

eB
py_ 7)(

(2.2

B
(2.3

layer: for large times this decay is best fitted by an algebraic HXY, Py, Py) = om
law N(t)~t~". However, for a given system there might be
no universal long-time behavigd1,16. This fact is attrib- +V(Xy). (2.1
uted to the coexistence of sticky structures with different . L : :
time-scale characteristics such as accessibility time, transitffTh? crylstallme pOtent'_T_‘lh IS |ncI|uded by_lntcrloducw_lg ;hi
time, etc. In this case their contributions in the transport,[eh ecl;uve _eectron ma(sws. e.tOtﬁ ene:jgyl 'S etermmgl y
asymptotics are significant in different time intervals. The € mermi energy an (x,y_) IS the modulating potential.
problem of relating the local properties of sticky layers to Depgndmg on the preparation techniqux,y) may b(_a ap-
o d)rommated by an egg-crate potentiamooth modulation

macrotransport characteristics has been attacked by a number
of techniques, such as Levy flighfd7], continuous time 27 20
random walks[18], renewal process formalisfi9], frac- V(x,y)=Vg 2+ CO{?X +COE<?)/
tional kinetics[10,17. ... However, we do not yet have
good criteria to determine whether, or when, any of thesgy 4 steep antidot potential:
techniques can be applied to a particular chaotic transport
problem. 2 2

We have verified the set of necessary assumptions needed V(x,y)=Vq cos(?x) COS(jy)
to justify the use of the renewal process formalism, which is
based on @ne-flight approximatiomethod. Description of with B characterizing the steepness of potential peaks.
the method is given in Sec. IV. Using renewal process for- Here we consider smooth modulation. The reason is two-
malism, the global coordinate variance asymptotics werdold. On the one hand, a steep antidot potential can be rep-
successfully related to long-time characteristics of local trapresented by Sinai billiard, a model that has been studied in-
ping structures. And the formalism was also generalized fotensively. On the other hand, smooth potential is
the specific case of nonuniform velocity. advantageous for study of the enhanced ballistic transport.

The article is organized as follows. Section Il discussedNe expect that random scattering from the potential is a less
the choice of a model, Sec. lll is devoted to investigation ofrelevant issue in smoothly modulated lattices. This assump-
the main regimes of the model and the topology of the phas#on is based purely on practical considerations: the final step
space. In Sec. IV we present the results of extensive conin process of preparation of steep antidot LSSL'’s is usually
puter simulation for averaged transport characteristics, analychemical wet etching, plasma etching, or damaging by irra-
sis of the trapping in the vicinity of homoclinic hyperbolic diation. The rough surface of the reflecting cylinders will
manifolds, and the discussion of the statistics of multifractaintroduce strong scattering which impairs enhanced ballistic
intermittent motion found in our model. transport while allowing one to observe collision-free pinned
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orbits. Smoothly modulated LSSL'’s can be realized by im-interaction regime, the authof24] found a transition from
posing the spatially distributed electric or magnetic fieldone-dimensional channeling to two-dimensional diffusive
from highly doped gates or an array of superconductors lyingnotion, this effect was called stochastic percolation. Essen-
atop the structure and separated by insulator layer, thus afially the same effect was found in the mod@l.8), (2.9
lowing more smooth variation. The scattering on impurities[23]. It was also pointed out ifi24] that in certain energy
is another issue relevant to both smoothly modulated anthtervals the transport is anomalous.
antidot lattices. We will discuss this matter below. We will briefly describe the features of the model in the
Measuring the energy and length in E¢.1) and(2.2) in low coupling regime(a detailed analysis can be found in
units of the potential strength and lattice constant, resped23]) and will concentrate mostly on newly found bifurca-
tively, we obtain the dimensionless Hamiltonian: tions that change the topology of KAM domains, as well as
1 1 properties of their boundary layers. Bifurcations occur at the
_ - 2, Ty 12 relatively high energiesE=3.1-3.6, A =0.15. Simple esti-
HOGY P Py) = 2 [Pt AT+ 2 [Py =M+ V(xy) mation shows that the classical model is still valid within this
(2.4 range of parameters. Indeed, the measure for the strength of
the coupling of Landau bands can be writt22] as K

with scaled potential =2mma?V,y/h?. Then one can estimate

V(X,y) =2+ cosx+ cosy. (2.5 E EE(Z'E)1/2~30 210
The dimensionless quantity hws NN 4 '
- eBa o 06 for typical values ofa/A ;=8—10. We also have that
T Ar(MmVy) R 2w, 2.6

®, 2wma’Voh/eB  V,
describes the strength of the nonintegrable coupling between D h? a’® o

two degrees of freedom due to the magnetic field. Lambda _ _ _
and the total energy are the only two parameters defining thehere®,/® is the ratio of the magnetic flux quantum to the

=10, (2.1)

behavior of the system. flux through a unit cell. As one easily can obtain the normal-
Introducing the velocities ized magnetic flux to be close to one, the param#tep-
pears to be large. At these values of the Fermi energy, the
Ux=PxtAY, vy=py—AX 2.7 coupling strength, and the magnetic flux, the energy spec-

trum will approach a continuous limisee Fig. 3 inf22)).
one can obtain the equations of motion in the following PP ( 9. 3ir22)

form: lIl. MAIN REGIMES, DOUBLING BIFURCATIONS
X=0yx, Uy=SiNX+2\vy, o o
2.9 The potentlgl\/ in Eq. (2.5 has minima at the energﬁ
=0, saddle point aE=2, and maxima aE=4. Depending
on the total energy, we distinguish three energy regimes. In
Note that variables,, x andv,, y are not canonical. The the low-energyregime E<2, all orbits are localized within
Hamiltonian in these variables can be written as one unit cell near the potential minima for all valuesof
For intermediate energie<E<4, drifting quasiperiodic
orbits extended in th& but not in theY direction, or vice
versa, may coexist with localized orbits. Afgh energies
E>4, the possible orbits are, in principle, not restricted in
The introduction of noncanonical variables is justified by configuration space. In the intermediate regime and at high
the convenience of choosing an “elementary cell” in the values of the coupling parametex{ 0.1-0.3, depending on
phase space: the Hamiltonian and equations of motion writtotal energy the invariant domains corresponding to delocal-
ten are symmetrical with respect to translations alwagdy  ized regular motion, disappear. This is another difference
by 27n. One can identify, therefore, coordinates motf2 between the cases of a smooth and a steep antidot potential.
and reduce them to the unit cgD,27]. Velocities are lim-  In the latter case, particles follow circular trajectories be-
ited within some interval defined by the total energy. Thustween collisions and the existence of such special orbits as
the choice of noncanonical variables allows one to get @ircular, rosette, drifting, ... depends purely on the strength
compact Poincare section. We will be calling components obf the magnetic field. A smooth potential provides effective
energy:E;=v?2/2+cosf)+1,i=x,y the“energy of i pendu- energy exchange between pendulums, making possible the
lum.” Energy exchange betweeX andY pendulums is pos- simultaneous presence of a variety of orbit types in the cor-
sible only if the magnetic field is nonzero. responding range of parameters. Apparently, these orbits are
The model described by E¢R.9), (2.9) was introduced in  not regular, therefore enhanced or suppressed diffusion will
[23]. Earlier work[24] considers the superposition of poten- persist only in the presence of “anomalous” structures
tials (2.2) and(2.3) with no magnetic field as a simple non- which are able to entrap tracers for a long time.
integrable model of two interacting pendulums. In the low- We found such well-defined structure at a specific set of

y=vy, vy=siny—2\uv,.

2 2
v 1%
H(X,y,0x,0y) = ?X+ ?y+2+cosx+ cosy. (2.9
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parameterg;=3.325,A=0.15. The formation of this struc-
ture is two-staged, being a result of two doubling bifurca-
tions. The first bifurcation is observed &;=3.18, A\
=0.15. In place of a central elliptical point, two elliptical
points of period two and saddle are form{édg. 1(a)]. With

a further increase of energy the KAM tori, which surround
the separatrix, are transformed into cantori chains, which
eventually merge with the chaotic sea. At ab&jt=3.31,
A=0.15, the last resonant island chain reaches the chaotic
sea and the saddle point splits with the formation of a central
elliptic point and two saddle points of period tMéig. 1(b)].

In this figure the next stage can be seen: as the energy goes
higher the cantori chains located within the regular domains
of side elliptical points reach inner boundary of broken sepa-
ratrix and form boundary island chains. Magnification of
these multilayered island chains is depicted in Fig. 7. At the
energyE=3.6, A=0.15 the last KAM tori in these regions
ceases to exist and the side elliptical points collajfsg.
1(0)].

Below we will concentrate on the reginte=3.325, A
=0.15 which presents the two aforementioned structures
serving as quasitraps: tlfeuter” quasitrap is located in the
vicinity of separatrix that separates regular domain around
the central elliptical point and chaotic sea. Thener” qua-
sitrap is formed by multilayered island chains contained
within side separatrice loops. These islands encircle side do-
mains of regular motion. While within quasitraps, a particle
does not gain enough energy to jump in telirection, it
moves ballistically alongX. A correspondingX quasitrap,
that disallows the motion in th¥ direction can be seen in
Fig. 1(b) at the upper and lower boundaries of the stochastic
sea.

The Y quasitrap rotates almost undeformed with period
two, e.g., revolution by z- in the VY plane correspond to
shift on 47 along theX direction. The Poincare section pre-
sented in Fig. (d) is taken atx= 27, x=mod(27), instead
of x= 1, compared with previous sections. The correspond-
ing rotation of theY quasitrap ism/2.

To demonstrate the impact of and X quasitraps on the
pattern of random motion, we have examined Levy walks in
the XY plane for the regimes before the second bifurcation:
E;=3.30, \=0.15[Fig. 2(a)], after the second bifurcation:
E;=3.325,A=0.15[Fig. 2(b)], and beyond the third bifur-
cation:E;= 3.6, \=0.15[Fig. 2(c)]. The Poincare section on
Fig. 2(c) has one elliptic point; side elliptic points have col-
lapsed. Long walks, shown in Fig(l§ correspond to ballis- -1
tic flights of the particle confined within ax or Y quasitrap.

E,=3.325
X=21, mod (2m) i
0 /2 m 3n/2 Y

IV. MACROSCOPICAL TRANSPORT CHARACTERISTICS ) ) ) .
FIG. 1. Bifurcations. Coupling paramater 0.15.(a) formation

In order to estimate the influence of the quasitraps wef a hyperbolic fixed point &= 3.18, (b) the separatrix splits and
have performed several numerical experiments including thenerges with the chaotic sea Bf=3.31, (c) side elliptical points
measurement of coordinate variand&sy. 3), of the Poin-  collapse atE=3.6, (d) rotation of the 8-shaped separatrix \ityY
care recurrences distributidfig. 4), and of the escape time plane.
distribution (Fig. 5). Except for the measurements of the es-
cape time distribution, the averaging was performed over Since the period of revolution varies in different regions of
X 10° trajectories in a time interval of about & @evolutions.  the Poincare section, it is not a convenient characteristic of
Initial conditions for this set were chosen within the chaoticmotion. The step of integrator is a more natural time variable
sea, outside of quasitraps, in the region of localized motionhere as it naturally relates velocity and positioAt
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Y(cells) Y(cells) Y(cells)
a“™[*. b C
E,=3.30 E,=3.325 E,=3.60
A"=0.15 A"=0.15 A'=0.15
I 1000 I 1000 I 1000
X(cells) X(cells) X{cells)|

FIG. 2. Levy walks of a tracer oKY plane for three different regime&) before the second bifurcatioth) after the second bifurcation,
(c) beyond the third bifurcation. The distance is measured in unit ¢etjsal to 27); the scale is the same fof andY direction and is
indicated for each plot. Initial coordinates of the tracé(w, Y=1.0,V,=0.0), and the time of computation (x8.0° steps of integrator
are the same for all three plots. Total path lengths are quite close:19% 1C°, and 1. 10° cells.

=|Ar}/|v]. A rough scale for the trajectories within tNequa- als% Sho"",f different exponentg=2.1 in the time interval
sitrap is 23—25 steps/period. 10*5—10°3 steps[Fig. 4(b)] and y=3.8 in the time interval

1 9 H
The analysis of distributions yields the following results: 10°"-10° steps]Fig. 4(c)].

(i) Direct measurement of the coordinate variance versug (i) TO deduce the exit time distribution exponenf
time allows one to estimate the exponept for ((r Y(t)~t~ ", we have chosen another three sets of initial co-

_<r>2)>~tﬂ,l§u$2_ Linear extrapolation of the curve de- ordinates, the first two having>310* points and the last one

picted in Fig. 3a) gives u=1.7 in the interval 19°-103
steps or, roughly, #8-10¢* revolutions andu=1.9 in the log, (D)
time interval 16-10°° stepgFig. 3(b)]. Beyond 16° steps 9y
x monotonically decreases up to 1.4; we will discuss this
effect below.

(ii) Poincare recurrence distributioch(t)~t~” (Fig. 4)

[ D
]
|
]
ST
S0,
E__?to:____
1 19,
1 : ’0
Sk LR X
I L%
A T 5 nglwl(F)

3.5 4 4.5 5 Iogﬂ)(t) [ L LA

I0g,,(®) vs log, (1) C: ;

6 6.5 7 log,( t) FIG. 4. Poincare recurrence distribution also has different power
asymptotics®(t)~t~ . (@ full distribution, (b) linear approxima-
FIG. 3. Coordinate variance?={((r —(r))2) has its asymptot- tion of the short-time asymptote,=2.1, (c) linear approximation
ics proportional td*; u can be different in different time intervals. of the long-time asymptotey=3.8. The inset in@ shows expo-
Distance is measured in unit cellsqual to 27), time is measured nential decay of the distribution up to *0Osteps.E;=3.325, A
in steps of integratorE;=3.325, A\=0.15. The averaging is per- =0.15. The averaging is performed ovex 20° trajectories during
formed over % 10° trajectories during 2.810° steps(about 1§  2.5x 107 steps(about 16 revolutions. Initial conditions were cho-
revolutions. sen within the region of chaotic localized motion.
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of estimation is of order 0.1, which makes it reasonable to
suggest equal asymptotics for all three sets. Figure 5 presents
the escape time distributions for all three sets.

Further analysis proved that different “short-time” and
“long-time” behavior are caused by the sticking to outer and
inner quasitraps. One may wonder, why are we fitting the
power laws on small intervals of data and distinguishing two
sets of asymptotics? The reason is that the inner and outer
quasitraps are different in a sense that a variation of the
model parameters changes their trapping properties and to-
pology independently. There is no renormalization group be-
tween these two quasitraps, and therefore observed
asymptotic variations are not the log-periodic corrections to
some “averaged” asymptote, introduction of which would
be meaningful for a renormalizable structut8ee, for ex-
ample, the study of trapping in the islands-around-island hi-
erarchy[16]). The next two subsections demonstrate that
short- and long-time asymptotics reflect individual trapping
properties of two different quasitraps.

D L L

A. Analysis of short-time sticking

O e N OB - - - - -
i : ] The results of the simulations show that short-time stick-
! v=3.4-3.5 ' a] ing occurs in the vicinity of a separatrix, shown in white on
-10 — S T T T W O'; the density plotFig. 6). The magnified fragment of Fig. 6 is

depicted in Fig. 7.

FIG. 5. Escape time distribution for three sets of initial points. ~ An underlying structure that controls the dynamics in the
Set 1:Ye[2.575,2.6, V,e[0.33,0.3§, 3x 10" points. Set 22Y  vicinity of a separatrix is two homoclinic tangles, created by
€[2.742.7§, V,e[0.0,0.0, 3x10" points. Set 3: Y  the intersections of stable and unstable manifolds of a hyper-
€[2.76,2.78, V,€[0.01,0.09, 4X 10" points. (@) full distribution.  polic periodic (period twg point connected to itself. Two
(b) linear approximation of the long-time asymptolt)~t~", v consecutive primary intersections of the manifolds define a
=3.4-3.5.E;=3.325,A=0.15. lobe, and the lobes are responsible for the flux through the

resonance. The resonance condition implies that the corre-
having 4x 10* points. The initial points of the first set were sponding angular frequencies admit a nontrivial integer com-
located at the outer boundary of separatrix in the vicinity ofbination which vanishes on some domain of the phase space.
the saddle point, within the interv@R.575,2.600 alongY  In such cases one can apply a symplectic change of variables
and within[0.33,0.39 along V, on the Poincare section  which transforms the resonant combination of the phase vari-
=1, x=mod(2m). Initial points of the second set were cho- ables into a new angle variable which slowly varies in the
sen within separatrix loops, but away from multilayered is-neighborhood of the resonant domain. The evolution of a
lands (inner quasitrap Y e[2.74,2.7§, V,e[0.0,0.1. The  system, which has two different time scales in some local-
last set covered an ar¢a.76,2.7§x[0.01,0.09 that lies in  ized domain, can be conventionally analyzed using a single
the vicinity of the first(closest to separatnixsland chain. perturbation technique:
Figure 7 shows the locations of these sets. Simulation con-

tinued until all points left ther quasitrap. For the time inter- I=—€eDyHi(x1,¢s€),

val 10°1-10°° steps,» was found to be equal 3.5 for the _ (4.1
second and the third sets, and 3.4 for the first one. The error ¢=DHy(x,1)+ €D H(X,1,¢;¢€),

Vil

FIG. 6. Density of trajectories within Y qua-
sitrap. E{=3.325, A=0.15. 16 initial points
were taken in the region of multilayered island
chains. Simulation continued until all trajectories
left the box (1.2,4.0)(—0.8,0.8). The number of
hits in each pixel of size 0.00R.002 is color
coded according to the legend. The maximum
density is observed within the inner quasi-trap—
the hierarchy of multilayered island chairi§ee
magnified fragment of this structure in Fig).7
Maximum number of hits in 1581. Resolution is
1400 by 800.

0.4fF
0.0p

04pk
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Vy Density Y
(. ‘

1050 1110 1200

A

vicinity of hyperbolic
fixed point

150000 155000 t

210000 215000 t

FIG. 7. The distribution of trajectory density within multilay-
ered island chains. Magnified fragment of Fig. 6 .

whereH,, is the Hamiltonian of unperturbed systegt, is
the perturbation, periodic in variablg.

A well-known example of the application of such a tech- 2
nigue is a whisker map, which is defined to be the leading-
order approximation ire andH to the separatrix map. The 730000 725000 t
separatrix map was introduced J&5] and was shown to
have pecu“ar properties such as a hidden renormalization FIG. 8. Trapped coordinate as a function of time for the Single
group [13,14 and n-step periodic solution§7,26]. Expan- trajecFory exiting from they gga_sitrap.Ef:3._325_,)\:0.15. I_nitial
sion around these solutions revealed the existence of locgPordinatesi(2.83, 0.225 (vicinity of the third island chain (a)
areas of stability, which were call¢dngleislands. Though it ~Wandering in the vicinity of the separatri) trajectory goes back.
is correct in its description of some general properties, thdo |sland§.(c) trajectory exits the quasitrap. Time is measured in
separatrix map approximation falls short in its prediction ofStepPs of integrator.
long-time characteristics of near-separatrix motion, as the
map parameters quickly deviate from those of the originaPitivity to a small change in the parameters also means that
system. the problem of finding the asymptotic behavior of trajecto-

Recently theenergy-phase methodias developed8], ries becomes a singular perturbation problem. Nonetheless, it
which provides a criterion for proving the existence of mul- can be addressed from the different viewpoint that utilizes
tipu|se homoclinic orbits near hyperbo”c-resonant, two de_thefibering of the stable and unstable manifolds by submani-
gree of freedom Hamiltonian systems, which Spend time 0f0|dS Consisting of initial trajectories that have the same
order log(1/€) near the slow manifold on which the reso- “@symptotic phase,” meaning these trajectories asymptote to
nance occurs. These are orbits negatively asymptotic to soniBe same orbit inA._o. Fibering allows one to view the
invariant set in the hyperbolic invariant manifofd, which ~ Problem as a regular perturbation one. It was shf@ij that
enter and leave a small neighborhood?gfof orderO(et?)  fibers perturb smoothly i and O(e'?) close to unper-

Ne tirnes7 then f|na||y return and approach the invariant set Ofurbed ﬁbers: FlberS are in.Var.iant under .the.ﬂOW, i.e., fibers
A, asymptotically. The number of times an orbit approaches'e mapped into fibers. This kind of solution is not amenable
and leaves this neighborhood depends on ghase shift to Melnikov-type methods. _

along the slow manifold which, in turn, depends on param- Our model is two-dimensional and is more complex for
eter of perturbatione. The distribution of the number of the analysis than the one studied[8)27]. Primarily this is
pulses as a function of the phase shift is fairly stable at lowdue to the fact that the perturbation is changing on the slow
N, and becomes increasingly sensitive to small changes iHme §ga}e. Nonetheles;, the.beh.avu.)r .of individual orbits in
the parameters for higher number of pulses. This puts thhe vicinity of slow manifolds is still similar to one observed
limit of order O(1/€'?) on the total passage time: following in 13 system. To demonstrate this we have performed two
an individual orbit numerically beyond this limit is ex- series of numerical simulations.

tremely difficult. In the 2D system where the perturbation is We have analyzed the pattern of motion of the trajectory
“self-induced,” the phase shift along the trajectory varies,that originates from multilayered islands located within sepa-
making the spectrum dfl.-pulse orbits “continuous.” Sen- ratrix loops, crosses the separatrix and exits from the quasi-
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trap (Fig. 8). Two conclusions can be drawn. First: motion in |,V
this region is highly correlated and can be represented by a
modulated periodic function of period7 as the period
doubles; the period of modulation tends to infinity as the

trajectory approaches the hyperbolic invariant manifold. The ¥
period of modulation and the period of regular oscillations
can be considered the two time scales that are used in the
perturbative analysis. As the trajectory approaches the outer
boundary of the quasitrap, the periodicity of modulation de-

grades, and finally, the modulation disappears. The second
conclusion is that the trajectory indeed approaches and ;
leaves the vicinity of the invariant manifold several times W
before it finally exits. ‘

In terms of perturbative analysis the estimations déd
us to the following. An unperturbed system can be viewed as

Mappings:
W 55th
| 85th
0 115th

two coupled pendulums involved in resonance energy ex- [ . g s .
change: in the vicinity of the saddle points the energy of the 2 2.5 Y
X pendulum oscillates periodically between 3.325 and 2.855 Vy B eppngs: b
with period 4, and the energy of th¥ pendulum oscillates o i

in the range 0.0—-0.47 also with the perio@.4Total energy M seventh|’

is conserved and equal to 3.325. As expected, the amplitude
of the energy exchange is proportional X0 0.47/3.325
=0.15. On a Poincare section=2m unperturbed oscilla-
tions of theY pendulum would be represented by an invari-
ant curve containing hyperbolic points of the perturbed sys-
tem. The last invariant tori corresponding to the resonant
energy exchange between pendulums existell;at3.31\
=0.15: it separated the separatrix from the external chaotic
sea. Thus, the upper boundary fercan be estimated as
3.325-3.31=0.015, or about 0.5% of the total energy.

The second series of numerical experiments demonstrates
the existence of fibers around the separatrix and displays
their evolution. In this series we used two sets of initial con-
ditions, located within the areaAY-AV,=(2.86,3.12)
(—0.3,0.0) on Poincare section=2, x=mod(27) that
includes part of the stable manifold and its vicinity near the
hyperbolic fixed point. The 3 10 initial conditions in the
first (ordered set were placed on the knots of the net of the
size N XM= Ny, While 1¢ points in the secondrandom
set were distributed randomly and uniformly over the same
area. The trajectories for the ordered set were computed over
10* steps, and trajectories for the random set were computed
over 103 steps.

Figure 9a) exhibits a deformation of the random set
along the 2D homoclinic manifoldX coordinate of consecu-
tive mappings differs by 2. We definedT;,5; as a period of
time needed to cover this distance. Thus, Fi@) @resents
evolution of the set after 55, 85, and 1T5,;. Study of the
set evolution allowed us to draw the following conclusions:  fiG. 9. The deformations of two sets of points along the 2D

(a) The set stretches around the manifold forming a spiralstaple manifold(a) three mappings of fopoints from the “ran-
The spiral does not self-intersect, its length grows with time dom” set. X coordinate of two consecutive mappings differs by. 2

(b) Consecutive mappings of the set are “enclosed”: they(b) magnified fragments of foufoverlapping mappings of 3.7

2.9 2.95 3 3.05 31 Y

do not intersect each other. X 10° points from the “ordered” set during their first passage
(c) Minimal distance between the spiral and the hyper-around the separatrix. Fine texture of mappings lasts about (1
bolic point decreases with time. —5)Tgiow (10° steps. In order to see this texture in the mono-

(d) Neighboring points stay close the for quite a few revo-chrome picture, mappings 1-7 depict every 7th, 5th, 3d, all trajec-
lutions around the separatrix: the fine texture(oferlap-  tories respectively(c) distribution of the points from the “ordered”
ping) mappings shown in Fig.(B) lasts about 1000 steps or set after 10 steps. Poincare sectiofig—(c) are taken aik =2,
(1—5)Tgow, WhereTg,,,, is a period of time needed to com- Ef=3.325,A=0.15.
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lo (‘I’) e efegel 1 T equal to 2.1. The relationship=y—1 is discussed below.
g“’ T Our estimation of the escape time for the random se (10
% N l ______ o =5000 steppagrees well with the Poincare recurrences dis-

tribution [see inset in Fig. @)]: at times shorter than £,
7777777777777 the distribution is purely exponential. Since the initial condi-
tions for the Poincare recurrences distribution were taken
------------ outside of the quasitrap, the exponential part consists of
those points which were not trapped at all. Observed escape
""""""" time 107 steps approximately equal to 2ZDQ
=(1/€)T¢,st- The averagd,,, for both sets was about 430
steps or 1&;,5;. Thus, the escape time is also approximately
(1/€?) T 10w, Wheree=5x10"3. Notice, however, that the
period of slow motion varies significantly with the distance
from the separatrix. The difference ., across the whole
quasitrap is a least an order in magnitude—from abotitd.0
less than 19 steps.

B. Analysis of trapping statistics

To relate the exponent for the Poincare recurrence dis-
tribution to u, where((r —(r))?)~t* we employ arenewal
process formalisinone of the methods describing toee-
flight approximation19,28. The formalism is based on the
use of the velocity autocorrelation function

FIG. 10. Escape time distribution for the secdrehdon set of
10° points trapped in the vicinity of the separatrix. Initial coordi- C(t)=(Vv(t)-v(0))=2(vx(t)v,(0)), (4.2
nates were uniformly distributed within the ar¥a=[2.87,3.13,
Vye[0.0,-0.3], X=2. (a) full distribution, (b) linear approxima- ¢ yandom walker which performs statistically independent
tion of the short-ime asymptot#(t)~t™*, »=1.1. Time is mea-  rae naths moving with a constant velocity. The durations
sured in steps of integratog=3.325,A =0.15. T of these paths are distributed % T)~ T~ 7, whereW (T)
is the probability density function. Results are applicable for
plete a revolution around the separatrix. Long&foy iS  T>Tocai, WhereT qcqr IS the characteristic duration of the
measured closer to the separatrix. The fine texture also indlecalized motion. In the second equality in £4.2) we have
cates clearly the regions of extensive stretching. used the square symmetry of our system and the fact that free
The corollary of statement&)—(d) is that any set of paths of durationl in negative or positive directions have
points in the vicinity of the separatrix deforms to a spiral. equal probability{ ) represents time averaging.
Different sets form spirals which, at a given time, can have We briefly outline the derivation of this formalism as we
different widths, lengths, and different “averaged” positions will need modify it for the case of nonconstant velocity,
on the separatrix. The longer the spiral the closer its “outer”described in the next section. Assumptions about tracers’ be-
end to the boundary of the quasitrap. For an exiting trajechavior are met in our setup, since trajectories for the Poin-
tory at the boundaryT ., and T, are of the same order. care recurrence distribution start and end up in the phase
Mappings of the set which contains all points from thevolume, located outside of quasitraps, and the motion in this
€2 vicinity of the separatrix were called fibers in the earlier volume is localized. Thus, the long flights occurring in the
publlcations[9,27]. We have shown that fibers are shaped asicinity of the separatrix can be deemed statistically indepen-
spirals, and they are doubly asymptotic to the separatrixdent. The span of flight durations (t6-1%) is much
Fibers can map on each other, but they do not intersect. greater than the average time of localized motion, which is of
Thin fiber structure is visible until about510° steps for  order 162 steps. Although a tracer trapped in the vicinity
the random set and at least until*l€ieps for the ordered set of the separatrix does not move with uniform speed, it is
[Fig. 9Ac)]. (We did not compute the evolution of the ordered sufficient to use its average velocity ag. Indeed, the ve-
set beyond 1bstep3. The mixing time in the quasitrap co- locity in the vicinity of the separatrix can be approximated
incides with the maximum of the exit time distributidRig. by a modulated periodic function with period much smaller
10). By that time only a small percentage of trajectoriesthan the minimum flight duration at which out random
leaves the quasitrap. We attribute the greater mixing time invalker formalism is valid. The period of modulation is infi-
the ordered set to the existence of internal resonances reflectite on the separatrix, and decreases at the periphery of the
ing the initial ordering of points. Polynomial long-time quasitrap. However, as we have roughly an equal number of
asymptotic for the random set is well defined in the intervalflight crossing(or reflecting back fromthe separatrix from
10*°-103 steps and equal to 1.1. This agrees very well withboth sides, one can introduce an average amplitude of the
Poincare recurrences asymptotic for the short-time trappingelocity. The reason why we expect equal influx from both
[Fig. 4b)]. In the same interval of time was found to be sides, is that the characteristic transit time through the outer
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quasitrap is much less than that through the inner one. t

Equivalently, the probability that a trajectory which pen- UZ(t)=2f (t=7)C(ndr, (4.6)
etrated the outer quasitrap from outside will reenter it again, 0

is much higher than the probability that it will be trapped on

the inner quasitrap. whose Laplace transform is?(s) =2s~2C(s), one can get
The flight of durationT along X gives the following con-
tribution to the correlation function: az(t)=2L*1{s*3+<T)*1s*4[CT>(s)—1]}, 4.7
C(t)~ Jxv(H rv(7r)dr whereL ~! is the inverse Laplace transform. To obtain long-
0 time asymptotics one should consider snsaiehavior. For
Tt the case of interest2y<3, the calculations yieldo?(t)
:fo v(t+7)v(7)dr ~t*" 7 or u+y=4.

For intermediate asymptotics in the time intervaf*30
10°2 steps, corresponding to trapping in the vicinity of the
separatrix, we have obtainegt w=2.1+1.7=3.8, which

which simply manifests that far<T the contribution of this ~ 2grees well with the one-flight approximation.
single path toC(t) is proportional to the length of the inter- W€ emphasize again, that the obtained relationship be-
val in which the correlation between timeand 7+t is pos- tweenu andy is not a unique result of the outlined formal-
sible. ism. This result was first derived if29] under a different
Using probability density function for the flight duration initial formulation and restrictions. Later there were devel-

distribution and normalizing the correlation function one ob-OP€d “jump” [18] and “velocity” [30] versions of the
tains continuous-time random-walk description. Though both ver-

sions produced the same relationship betwgeand v, the
U(Z) P jump version was found deficient in its description of veloc-
C(tH= mf (T-H)®(T)dT, (4.4 ity power spectrum asymptotics. The “velocity” model was
T later generalized to allow the velocity to vary from flight to
where the statistical independence of flights has been use light, according to a given probability density funCt'[ﬁﬂ].‘ :
Only single paths between 0 amaontribute to the cor- he reason for the use of the renewal process formalism is
that its assumptions can be adequately justified. The formal-

relation function above. The word “single” is used for paths . 50 b i lized t b lied 1o th
that consist of the following three phases: wandering in theSM can aiso be easily generalized o be applied 1o the spe-

chaotic sea outside of a quasitrap within the region of IocaI-C'f'C.Case of nonuniform velocity, as is done in the next
ized motion, correlated motion in a certain direction within aSection.
quasitrap, wandering in the chaotic sea again.

Complex flights consisting of two or more paths have an C. Transport across multilayered island chains
equal probability of ending up with positive or negative
speed and do not contribut®r more details, se28]). Gen-
erally, this assumption does not work for the case of gradu

ally increasing velocity,. considered in the next section.gqe elliptic points. Figure 7 shows a close-up view of this
anethelessz one can stil resprt on .the ?‘fgume”t that for 8tructure with five well-defined layers, the sixth is destroyed.
given total flight duration, a single flight is more probable. -, layer has the same number of islands, the first, second
Indeed, if for largeT the probability of being trapped once is ;4 fo1th |ayers have a self-similar subisland hierarchy.
proportional toT_ 7, then the probability fo reenter the qua- pigre 7 demonstrates that, except for the aforementioned
sitrap decays agor "(t—7) Ydr~t 2" . _hierarchical structures, the inner quasi-trap is almost uni-
In addition we _have u_sed the foII_owmg technique to dlS-form|y dense, providing long trapping times. Trapping on
regard complex flights: since there is no clear boundary benjerarchical structures of the fourth chain is a possible reason
tween the chaotic sea and the outer quasitrap, we have ags |ow density at the latifth) layer. After a careful exami-
sumed the flight is single, if it does not reenter the box thayation we have concluded that characteristic accessibility
includes this quasitrap, and that part of the chaotic sea whekgnes to the higher generations of islands in hierarchical
the direction of motion is the same as in the quasitrap. In th,ctures are larger than the time of our computations. An
assumption above, such a flight can be qualified as single.ngication of this can be seen on Figb® the exponeniu

Denoting the Laplace transforms @f(t) and ®(T) by  for a coordinate variance asymptotic decreases monotoni-

=03(T—1), 4.3

Long flights, contributing to the tail of the distribution,
reside mostly on thénner quasitrap—that is what we have
called the hierarchy of multilayered islands, surrounding two

C(s) andd(s), Eq. (4.4 turns into cally beyond 10 steps either to a new value or to one, that is
_ the case if the accessibility time to a second generation is
= 1 1 &(s)—-1 higher and all other sources of effective trapping are de-
C(s)~ s + m s2 4.9 pleted. Asymptotics obtained for time less tharf &t&ps, are

not therefore affected by the presence of self-similar struc-
Using the relationship between the mean-square displacédres, and we can exclude these structures from consider-
ment and correlation function: ation.
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oF1() is the hypergeometric function.

! The reasoning is exactly the same as when calculating the

6.4 6.8 log,,(t) contribution of a single flight in the case of constant speed.

The expression above converges anywhere on the dircle

FIG. 11. Average velocity of tracers within multilayered island <T Above we were able to obtain Laplace transform of the

chajns as a function of trapping time. The dependence i§ assumed & relation function without specifying the explicit form of

be in the form(V,)=Vo,+aT", «=0.80+0.05. Averaging was the flight distribution function. This time we have to reverse

performed over 1btrajectories. this order to simplify our task. We assume the same form of

For quasitrapping on island chains. the expon d escape time distribution as was used in the original deriva-
for esc(; e timgpdis%ribution and coo;dinate F\)/ariance gan btion of the renewal process formaliss2]: ®(T)=A(B
P % CT)~7, with normalizationABL~?/C(y—1)=1. For sim-

related in a similar way, shown in the previous section. How-_.~.
ever, we can no Ionggr assume a corrn)stant velocity of tracelpsIICIty we assumé=C=1, A=y—1. Thus,
as we did above. The velocity is still a modulated periodic
function. But its amplitude, averaged over the period of 2
modulation, increases as the tracer penetrates deeper into is- C(t) = voA fwTa(T_t)l—a
land layers. Given the fact that stickiness across the inner (M 1+ a) )¢
quasitrap is almost uniform, one can suggest that longer
flights penetrate deeper toward the most inner island chain.
Thus, we expect longer flights to have higher average veloc-
ity. Figure 11 presents the correlation of the average velocity
with the flight length. To relate the growth of the average After a few algebraic transformations this integral can be
velocity to the properties of islands, one has to make certairaken by parts, yielding
assumptions about the transition rates between island chains
and their scaling properties. We were puzzled by the peculiar VAT (1+a)[(—2-2a+7y)
grouping of points on Fig. 11 and have verified that each C(t)= 0 ——— — thr2e(1+nt
! . . (M (y—1I'(—1-aty)

group of points corresponds to the trapping on particular
island chain. One must admit, though, that observed polyno- 1
mial growth can result from averaging over many contribut- XoF1| 1+, =14y, ~1-aty, 0| (410
ing factors, not the least of which might be a multifractal
behavior of individual islands within chains.

For now we simply use the result presented in Fig. 11 andalid if (y—2«)>2. The variance can still be written in the
set thatv ~vgt® «=0.80+0.05. Then the contribution of form (4.6). After performing the integration and taking the
flight durationT will be limit t—oo

X ,F; (1+T)"7dT. (4.9

t
-a,1,2+a,1— T

I'i+a)l'(=4-2a+vy)
202A | (y—1)I(—1—a+7y)
(T) | T@+2a)(-3-2a+7y)

- (1+a)l(y)

t4t2e7Y 24 2a<y<3+2a

o (t—w)=

(4.11)

t, 3+2a<y.

At «=0 the formula reduces to the result of the previousship u=4+2a—y=4+1.6—3.75=1.85 satisfies this.

section. At this point we have to explain the difference between
In the time interval 16-10° steps, where we associate Poincare recurrence and escape time asymptotics. Below is

with the quasitrapping on the sticky layers of island chainsan excerpt from the work of Meig=33]. According to the

we haveu=1.90+0.05, y=3.75+0.1, v=(3.4-3.5)=0.1, author the exit time probability distribution for the entry set

depending on the set ard=0.80+0.05. Thus, the relation- 1 is the probability that a trajectory inwill have a given exit
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time:

. M(Tj)
Prokt™(1)=j)=—-+,

Mt (h=D=""7
wheret " (1)=ta_w.a(l) is exit time,ACM andI CA is the
incoming set with backward exit time 1T; is part of the

(4.12

incoming set with exit timg. If set A is chosen so that the
characteristi¢ransit time for it is much longer than the char-

acteristicaccessibilitytime of the entry set oA from some

PHYSICAL REVIEW E 63011112

Violation of the first condition means that one counts a
single trajectory several times. This would lead to an asymp-
totics less thany and, in the limits;=A,.., would produce

an asymptoticy— 1. Violation of the second condition would
produce a greater asymptotic as one fails to account for long
pieces of the trajectories. The particular choice of subsets
suggests that the second condition is being held as all three
sets are located within the outer quasitrap where the transit
time is known and is much less than that for the inner qua-
sitrap. The first condition is violated, probably because all

subset oM\ A, then the asymptotic for escape time for entry subsetss; were initially ordered. The previous section dem-
set must be equivalent to the asymptofidor the Poincare onstrates how the ordering affects the escape time statistics.

recurrences distribution for that subsetMf A.
For theaccessiblesetA,..CA

e %
Prolyt (Aacc)_k)_mj:k u(Ty), (413

which is the same as the survival probability foup to
normalization. Similarly the transit time probability is

ji—1

o L (T
Prot(ttransit(AacC) _J)_ ,Uv(Aacc) kzo /‘L(TJ) _J Iu’(AaCc) .
(4.19

These equations imply that j&(T,)~k #, B>2, ask
—0, then

Prokt*(1)=k)~k #
Prol(t™ (1)=k)~ Prolt* (A,co =K)

~ Prouttransit(Aacc) =k)
~k~ (A1),

(4.195

That would explain the departure of obtained escape time
asymptotics fromy or y—1.

V. CONCLUSION

The fine structure of the stochastic layer was always a
problem of great interest and became more significant as the
problem of anomalous transport in dynamical chaos arose for
different applications. In this paper we have analyzed the
phase-space dynamics in the vicinity of two-dimensional hy-
perbolic slow manifolds. This structure is thought to be re-
sponsible for the long trapping in islands-around-island hier-
archies and multilayered resonant island chétine layers of
the whiskered hyperbolic tori created in the destruction of
resonant KAM tori in nearly integrable Hamiltonian sys-
temsg. A general global perturbation theory for such struc-
tures does not currently exist even for one-dimensional sys-
tems. A rigorous analysis of two-dimensional Hamiltonian
systems is trickier because the “self-induced” perturbation
generally have a wide Fourier spectrum.

We have shown that in a particular model trajectories in
the vicinity of the slow manifold form a hierarchy of thin
submanifolds known as fibers. We have shown that fibers are

which means thav=y—1 for escape from the accessible shaped as spiral;, and that they are doubly asymptotic. to the
set. The same result under a different approach was obtain§$PW manifold. Fibers map on each other, but do not inter-
in [34]. Our measurements of escape time and Poincare r&€Ct. _ o )
currence asymptotics for the trapping in the outer quasitrap Generally, the observed picture coincides with the one
confirm this relationshipyy=2.1 andv=1.1. In the case of predicted for § systemg27]. We have shown that the char-
the inner quasitrap, howevery=3.75-0.1 and v=(3.4  acteristic trapping time in the vicinity of the slow homoclinic
—3.5)%£0.1 (e.g., v varies between 3.4 and 3.5 for different manifold is about (I)- T, (period of perturbationand
sets and the precision is of order 0.The explanation is as (1/€*?)(Tg o), Where(Tg o) is the averaged period of slow
follows. For the outer quasitrap the characteristic mixingmotion around the separatrix. The width of the quasitrap and,
time (1G*7 steps for the random set which was used to comconsequently, the variation &, within it are much big-
pute the escape time distributiois less than the minimum ger than those assumed in the earlier studies of low-
time at which the polynomial decay begins. Thus, we havelimensional systemi$,27]. We estimate that for an exiting
computed the escape time distribution for the accessible setajectory at the boundary of the quasitrap,,,, and Tas:
which is the whole quasitrap. This is not true for the innerare of the same order. Further study is needed to verify the
quasitrap: the mixing time is much greater there and theredependence of the trapping time erfor different values of
fore the escape time distribution was computed for smalperturbation.
subsetss;CA,... In this case it is easy to see that As was discussed in the introduction, the results obtained
(2) if all points of s; belong to different trajectories that for our model are applicable to other 2D systems with a
start on the incoming set, AND similar type of resonance. Another fact allows us to suggest
(2) if the span between the shortest and the longest timeven broader applicability: our simulations show that the
intervals needed to reach pointsffrom the incoming set near-separatrix orbit dynamics observed in our model is
(accessibility timg is much less than the characteristic time similar to one predicted for lower dimensional systems.

at which the asymptotic behaviot™” is observed,
then the escape time asymptotic for setis equal tovy.

However, in terms of the topology of the phase space, the
original studies of one-dimensional Hamiltonian systems as-
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sumed only the existence of a resonant homoclinic manifoldsorresponds té;=10 meV. To reproduce the regime stud-
[8,27]. It implies that any 2D near-resonance Hamiltonian,ied in our model, one has to make the modulation potential
whose reduced 1D counterpart has a homoclinic structuref order Vo=3 meV. Corresponding harmonic frequency
might exhibit similar phase-space dynamics in the vicinity of wy,= (27/a)(Vo/m)Y?~3x 10'? for a=200 nm. The mag-
resonant manifolds. netic field which corresponds to=0.15 isB~0.5T. This

We have concluded that renewal process formalism casimple estimation yields a modest span of ordet ¢élls.
be applied to the case of a velocity that is not constant during’here is evidence, however, that for chaotic systems with
the flight, but rather oscillates around the median with arfinite-size quasitraps, the effective lower limit crossover fre-
average period of oscillations much less than the duration afuency is, actually, lower than 4, because the mobility is
the flight. This is not surprising, though, because the averaggmited primarily by small-angle scattering which may or
velocity is limited within a certain interval defined by the may not oust a particle from a quasitrap. In experimg¢a
total energy and by the location of the quasitrap, and for anyn magnetoconductance fluctuations in ballistic microstruc-
given flight length only nonsymmetry in the probability dis- tures, which were shaped as a stadium and a circle, a long
tribution function for an average velocity would affect the polynomial tail in the power spectrum for the circle persisted
coordinate variance asymptotic. This would be, however, aip to lengths of at least an order more than the measured free
higher-order correction. path length. The authors in a later study of the effects of

We have shown that macrotransport characteristics ofandom noise on magnetoresistari88] demonstrated that
LSSL’s are indeed highly susceptible to small changes inn some ranges of parameters scattering does not destroy the
parameters and that this effect is related to the existence aqgblynomial tail. Their model of random noise, however,
the evolution of trapping structures within the chaotic seacould not fit the experimental daf87]; it either killed the
Practically, our model can be realized and long flights can b@olynomial tail at a high level of noise or gave a significantly
detected, at least those with length up t-400° unit cells,  slower decrease in the exponential part of the spectrum. This
corresponding to the trapping in the vicinity of the separa-disagreement is probably an indication of prevailing small-
trix. The usual technique that can be applied is the analysiangle scattering in the experimental system.
of the velocity power spectrum, which can be directly ob-
tained from measurements of conductivitfw) in the far-
infrared and microwave range. Anomalous regimes will be
reflected by a power-law increase @s-0, which will hold This work was supported by the U.S. Department of En-
up to crossover frequenay.,~ 1/7.,), defined by the scat- ergy, Grant No. DE-FG02-92ER54184. Computations were
tering on impurities. The upper limit of the power-law re- performed on SP2 supercomputer clusters at the University
gime is given by the harmonic frequeney, of the superlat- of San Diego and at the University of Michigan. We thank
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