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Enhanced diffusion in smoothly modulated superlattices
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~Received 16 February 2000; revised manuscript received 13 September 2000; published 27 December 2000!

We investigate a superdiffusive behavior found in a quasiclassical model of a square-planar superlattice
subjected to a perpendicular magnetic field. It is shown that certain accelerated domains are responsible for
long trapping of tracers and setting them into near-ballistic motion. The mechanism of entrapment appears to
be two-staged and multifractal. Relatively short trapping occurs in the vicinity of homoclinic tangles, created
by intersections of stable and unstable manifolds of a hyperbolic fixed point, connected to itself. A structure of
the quasitrap reveals families of multipulse solutions, doubly asymptotic to slow manifolds. The existence of
orbits of this type was proved@G. Haller and S. Wiggins, Arch. Rational Mech. Anal.130, 25 ~1995!# for
integrable two-degree-of-freedom Hamiltonian systems with perturbation. We describe mixing dynamics in
this region and examine characteristic escape time scales. More prolonged quasitrapping is due to sticking to
resonant multilayered island chains that are found to accelerate ballistic transport. Phase-space dynamics is
analyzed. We successfully employ a renewal process formalism to relate Poincare recurrences and coordinate
variance asymptotics for both quasitraps and also justify the use of this formalism for the specific case of
gradually increasing average velocity.

DOI: 10.1103/PhysRevE.63.011112 PACS number~s!: 05.40.Fb, 05.45.Gg, 05.60.Cd, 66.30.2h
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I. INTRODUCTION

In the last decade significant attention was brought to
investigation of so-called commensurability effects found
lateral surface superlattices~LSSL’s! subjected to a magneti
field @1#. Commensurability appears in the interplay of s
perlattice period and Larmor radius. Other important para
eters are the nature, geometry, and shape of lattice mod
tion as well as the time dependence and the geometry o
magnetic field. The interest to surface superlattices or
nates, primarily, from their nonlinear and nontrivial respon
to the applied magnetic field. Several interesting phenom
were observed@2,3#, in particular, commensurability o
Weiss oscillations of the longitudinal magnetoresistan
found in bidirectionally~2DEG! strongly modulated super
lattices@4#. Peaks in the magnetoresistance appeared for
cific strengths of the magnetic field that would have cau
unperturbed electrons to move along classical collision-f
orbits encircling 1,2,4,9 . . . dots. Initially suggested
‘‘pinned’’ mechanism, which is well suited for the billiard
model of reflecting disks, described experimental res
quite closely. Two major flaws of this mechanism, noted
@5#, are the assumption that circular cyclotron orbits do
respond to an electric field used to measure resistivity,
the failure to explain an additional peak in magnetoresista
which could not be associated with a collision-free orb
This peak becomes predominant in samples of smaller e
tron densities. Later experiments on antidot LSSL’s@6# re-
vealed additional complexities in the behavior of the mag
toresistance. More peaks of varying intensity were observ
actual positions of peaks associated with collision-free or
did not coincide with predicted ones. Having studied elect
motion in phase space (x,y,vx ,vy) by means of Poincare
surfaces of section, the authors@5# concluded that peaks in
magnetoresistance mainly are caused not by the var
number of pinned~regular! orbits within Kolmogorov, Ar-
nold, and Moser~KAM ! domains, but by correlations within
1063-651X/2000/63~1!/011112~14!/$15.00 63 0111
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the chaotic sea which also shows structure, reflecting
presence of nonlinear resonances. It has long been kno
but not well understood, that boundaries of domains of re
lar motion can be ‘‘sticky,’’ meaning that chaotic trajectorie
can exhibit long stays near the boundaries in a narrow s
called the boundary layer. Chaotic trajectories, trapped in
layer, perform nearly regular motion for a long time, a
thus, depending on the behavior of regular domain~oscilla-
tory, accelerator, etc.!, contribute to sub- or superdiffusiv
motion.

In this paper we consider the model of a 2DEG stron
smoothly modulated superlattice. We study an evolution
trapping structures within a chaotic sea and properties
their boundaries. Our results clearly demonstrate how a sm
variation of the model parameters can drastically change
pattern of chaotic electronic motion and how this chan
translates into the variation of macrotransport characteris

Our second goal is to present further analysis of a tr
ping mechanism which is realized in two-dimension
Hamiltonian systems and which is a plausible cause of
stickiness in resonant domains.

In a number of recent publications@7–9# it was suggested
that at least in some cases the stickiness of a boundary l
is due to its specific substructure consisting of higher-or
resonant islands surrounded by chaotic manifolds which c
nect fixed or periodic hyperbolic points. One example o
domain with such a structure of the boundary layer is
islands-around-island hierarchy studied in@10–12#. Most of
its trapping time a tracer resides in the vicinity of the ma
fold that encircles a particular generation of islands. Tra
port across the hierarchy is realized as a sequence of ju
between intersecting turnstiles that belong to manifolds
neighboring generations. A similar scenario is observed
the case of trapping on a resonant multilayered island cha
manifolds now encircle different island layers, not gene
tions.

The tracer dynamics within different types of chaotic h
perbolic manifold has been intensively studied in on
©2000 The American Physical Society12-1
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DMITRY A. RAKHLIN PHYSICAL REVIEW E 63 011112
dimensional~1D! area preserving systems with a perturb

tion ~also known as 112 systems! @7,8,13#; few results are
known for higher dimensional systems@14#. We were able to
thoroughly analyze the chaotic dynamics in the vicinity
homoclinic tangles of 2D hyperbolic manifold. More impo
tantly, the obtained results do not depend on the choice
particular model. Indeed, for any two-dimensional Ham
tonian one of the angular variables is slow in the vicinity
a hyperbolic manifold. By a symplectic change of variab
the Hamiltonian can be reduced to the resonant normal f
which, for two degrees of freedom, is integrable. One c
reduce it to a system with one degree of freedom depen
on the constant value of the first integral as a parameter
then draw phase portraits. For a given resonance there
only finitely many types of phase portraits@15#, and these
types can be distinguished through the lowest-order term
the normal form. The phase portraits are qualitatively disti
only for finitely many resonances. This allows us to exte
the applicability of our observations to systems with t
same type of phase portrait and, as discussed below, to s
other 2D near-resonant systems.

The paper also discusses the problem of an adequat
netic description for theintermittentmotion found in systems
with a sticky domain. Stickiness manifests itself in the slo
polynomial decay of the number of particles in a bound
chaotic region of phase space that includes a sticky boun
layer: for large times this decay is best fitted by an algeb
law N(t);t2n. However, for a given system there might b
no universal long-time behavior@11,16#. This fact is attrib-
uted to the coexistence of sticky structures with differe
time-scale characteristics such as accessibility time, tra
time, etc. In this case their contributions in the transp
asymptotics are significant in different time intervals. T
problem of relating the local properties of sticky layers
macrotransport characteristics has been attacked by a nu
of techniques, such as Levy flights@17#, continuous time
random walks@18#, renewal process formalism@19#, frac-
tional kinetics @10,12# . . . . However, we do not yet have
good criteria to determine whether, or when, any of th
techniques can be applied to a particular chaotic trans
problem.

We have verified the set of necessary assumptions ne
to justify the use of the renewal process formalism, which
based on aone-flight approximationmethod. Description of
the method is given in Sec. IV. Using renewal process f
malism, the global coordinate variance asymptotics w
successfully related to long-time characteristics of local tr
ping structures. And the formalism was also generalized
the specific case of nonuniform velocity.

The article is organized as follows. Section II discuss
the choice of a model, Sec. III is devoted to investigation
the main regimes of the model and the topology of the ph
space. In Sec. IV we present the results of extensive c
puter simulation for averaged transport characteristics, an
sis of the trapping in the vicinity of homoclinic hyperbol
manifolds, and the discussion of the statistics of multifrac
intermittent motion found in our model.
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II. MODEL HAMILTONIAN

From the quantum-mechanical point of view, electro
moving in a two-dimensional periodic potential with
square unit cell and subjected to a weak~or strong! magnetic
field perpendicular to the plane of lattice, can be describ
by a tight-binding Harper model@20#, which is valid in the
one-band approximation. The spectrum of Harper’s mo
was first computed by Hofstadter@21# and is commonly
known as a Hofstadter butterfly. However, in the regim
where the potentials of the magnetic field and the lattice
of comparable strength, the one-band approximation is
valid due to the coupling of Landau levels. The modifi
spectrum that accounts for coupling was recently compu
in @22#, and was shown to approach a continuous class
limit, i.e., many gaps are closed, Landau bands are mer
and even weak disorder broadening, estimated in the s
consistent Born approximation, will close still open gaps.

The result is not surprising. Modulation-induced broade
ing of the Landau levels results in their overlapping, and t
effect is known as magnetic breakdown. Magnetic bre
down allows electron transitions between states with diff
ent wave vectors that destroy both Bragg interference eff
and size quantization within potential well regions. This ju
tifies the choice of a classical Hamiltonian for the regime
strong coupling:

H~x,y,px ,py!5
1

2m F Fpx1
eB

2
yG2

1Fpy2
eB

2
xG2G

1V~x,y!. ~2.1!

The crystalline potential is included by introducing th
effective electron mass. The total energy is determined
the Fermi energy andV(x,y) is the modulating potential
Depending on the preparation technique,V(x,y) may be ap-
proximated by an egg-crate potential~smooth modulation!

V~x,y!5V0F21cosS 2p

a
xD1cosS 2p

a
yD G ~2.2!

or a steep antidot potential:

V~x,y!5V0FcosS 2p

a
xD cosS 2p

a
yD Gb

~2.3!

with b characterizing the steepness of potential peaks.
Here we consider smooth modulation. The reason is tw

fold. On the one hand, a steep antidot potential can be
resented by Sinai billiard, a model that has been studied
tensively. On the other hand, smooth potential
advantageous for study of the enhanced ballistic transp
We expect that random scattering from the potential is a
relevant issue in smoothly modulated lattices. This assu
tion is based purely on practical considerations: the final s
in process of preparation of steep antidot LSSL’s is usua
chemical wet etching, plasma etching, or damaging by ir
diation. The rough surface of the reflecting cylinders w
introduce strong scattering which impairs enhanced balli
transport while allowing one to observe collision-free pinn
2-2
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ENHANCED DIFFUSION IN SMOOTHLY MODULATED . . . PHYSICAL REVIEW E 63 011112
orbits. Smoothly modulated LSSL’s can be realized by i
posing the spatially distributed electric or magnetic fie
from highly doped gates or an array of superconductors ly
atop the structure and separated by insulator layer, thus
lowing more smooth variation. The scattering on impurit
is another issue relevant to both smoothly modulated
antidot lattices. We will discuss this matter below.

Measuring the energy and length in Eqs.~2.1! and~2.2! in
units of the potential strength and lattice constant, resp
tively, we obtain the dimensionless Hamiltonian:

H~x,y,px ,py!5
1

2
@px1ly#21

1

2
@py2lx#21V~x,y!

~2.4!

with scaled potential

V~x,y!521cosx1cosy. ~2.5!

The dimensionless quantity

l5
eB a

4p ~mV0!1/25
vc

2v0
~2.6!

describes the strength of the nonintegrable coupling betw
two degrees of freedom due to the magnetic field. Lam
and the total energy are the only two parameters defining
behavior of the system.

Introducing the velocities

vx5px1ly, vy5py2lx ~2.7!

one can obtain the equations of motion in the followi
form:

ẋ5vx , v̇x5sinx12lvy ,
~2.8!

ẏ5vy , v̇y5siny22lvx .

Note that variablesvx , x andvy , y are not canonical. The
Hamiltonian in these variables can be written as

H~x,y,vx ,vy!5
vx

2

2
1

vy
2

2
121cosx1cosy. ~2.9!

The introduction of noncanonical variables is justified
the convenience of choosing an ‘‘elementary cell’’ in t
phase space: the Hamiltonian and equations of motion w
ten are symmetrical with respect to translations alongx andy
by 2pn. One can identify, therefore, coordinates mod(2p)
and reduce them to the unit cell@0,2p#. Velocities are lim-
ited within some interval defined by the total energy. Th
the choice of noncanonical variables allows one to ge
compact Poincare section. We will be calling components
energy:Ei5v i

2/21cos(i)11, i 5x,y the ‘‘energy of i pendu-
lum.’’ Energy exchange betweenX andY pendulums is pos-
sible only if the magnetic field is nonzero.

The model described by Eq.~2.8!, ~2.9! was introduced in
@23#. Earlier work@24# considers the superposition of pote
tials ~2.2! and ~2.3! with no magnetic field as a simple non
integrable model of two interacting pendulums. In the lo
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interaction regime, the authors@24# found a transition from
one-dimensional channeling to two-dimensional diffusi
motion, this effect was called stochastic percolation. Ess
tially the same effect was found in the model~2.8!, ~2.9!
@23#. It was also pointed out in@24# that in certain energy
intervals the transport is anomalous.

We will briefly describe the features of the model in th
low coupling regime~a detailed analysis can be found
@23#! and will concentrate mostly on newly found bifurca
tions that change the topology of KAM domains, as well
properties of their boundary layers. Bifurcations occur at
relatively high energies:E53.123.6, l50.15. Simple esti-
mation shows that the classical model is still valid within th
range of parameters. Indeed, the measure for the streng
the coupling of Landau bands can be written@22# as K
52pma2V0 /h2. Then one can estimate

Ef

\vc
5

1

l

a

l f

~2•E!1/2

4
.30 ~2.10!

for typical values ofa/l f58210. We also have that

K
F0

F
5

2pma2V0

h2

h/eB

a2 5
V0

\vc
.10, ~2.11!

whereF0 /F is the ratio of the magnetic flux quantum to th
flux through a unit cell. As one easily can obtain the norm
ized magnetic flux to be close to one, the parameterK ap-
pears to be large. At these values of the Fermi energy,
coupling strength, and the magnetic flux, the energy sp
trum will approach a continuous limit~see Fig. 3 in@22#!.

III. MAIN REGIMES, DOUBLING BIFURCATIONS

The potentialV in Eq. ~2.5! has minima at the energyE
50, saddle point atE52, and maxima atE54. Depending
on the total energy, we distinguish three energy regimes
the low-energyregimeE,2, all orbits are localized within
one unit cell near the potential minima for all values ofl.
For intermediate energies2,E,4, drifting quasiperiodic
orbits extended in theX but not in theY direction, or vice
versa, may coexist with localized orbits. Athigh energies
E.4, the possible orbits are, in principle, not restricted
configuration space. In the intermediate regime and at h
values of the coupling parameter (l;0.1–0.3, depending on
total energy! the invariant domains corresponding to deloc
ized regular motion, disappear. This is another differen
between the cases of a smooth and a steep antidot pote
In the latter case, particles follow circular trajectories b
tween collisions and the existence of such special orbits
circular, rosette, drifting, . . . depends purely on the stren
of the magnetic field. A smooth potential provides effecti
energy exchange between pendulums, making possible
simultaneous presence of a variety of orbit types in the c
responding range of parameters. Apparently, these orbits
not regular, therefore enhanced or suppressed diffusion
persist only in the presence of ‘‘anomalous’’ structur
which are able to entrap tracers for a long time.

We found such well-defined structure at a specific set
2-3
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DMITRY A. RAKHLIN PHYSICAL REVIEW E 63 011112
parametersEf53.325,l50.15. The formation of this struc
ture is two-staged, being a result of two doubling bifurc
tions. The first bifurcation is observed atEf53.18, l
50.15. In place of a central elliptical point, two elliptica
points of period two and saddle are formed@Fig. 1~a!#. With
a further increase of energy the KAM tori, which surrou
the separatrix, are transformed into cantori chains, wh
eventually merge with the chaotic sea. At aboutEf53.31,
l50.15, the last resonant island chain reaches the cha
sea and the saddle point splits with the formation of a cen
elliptic point and two saddle points of period two@Fig. 1~b!#.
In this figure the next stage can be seen: as the energy
higher the cantori chains located within the regular doma
of side elliptical points reach inner boundary of broken se
ratrix and form boundary island chains. Magnification
these multilayered island chains is depicted in Fig. 7. At
energyE.3.6, l50.15 the last KAM tori in these region
ceases to exist and the side elliptical points collapse@Fig.
1~c!#.

Below we will concentrate on the regimeE53.325, l
50.15 which presents the two aforementioned structu
serving as quasitraps: the‘‘outer’’ quasitrap is located in the
vicinity of separatrix that separates regular domain aro
the central elliptical point and chaotic sea. The‘‘inner’’ qua-
sitrap is formed by multilayered island chains contain
within side separatrice loops. These islands encircle side
mains of regular motion. While within quasitraps, a partic
does not gain enough energy to jump in theY direction, it
moves ballistically alongX. A correspondingX quasitrap,
that disallows the motion in theX direction can be seen in
Fig. 1~b! at the upper and lower boundaries of the stocha
sea.

The Y quasitrap rotates almost undeformed with per
two, e.g., revolution by 2p in the VyY plane correspond to
shift on 4p along theX direction. The Poincare section pre
sented in Fig. 1~d! is taken atx52p, x5mod(2p), instead
of x5p, compared with previous sections. The correspo
ing rotation of theY quasitrap isp/2.

To demonstrate the impact ofY and X quasitraps on the
pattern of random motion, we have examined Levy walks
the XY plane for the regimes before the second bifurcati
Ef53.30, l50.15 @Fig. 2~a!#, after the second bifurcation
Ef53.325, l50.15 @Fig. 2~b!#, and beyond the third bifur-
cation:Ef53.6, l50.15@Fig. 2~c!#. The Poincare section o
Fig. 2~c! has one elliptic point; side elliptic points have co
lapsed. Long walks, shown in Fig. 2~b! correspond to ballis-
tic flights of the particle confined within anX or Y quasitrap.

IV. MACROSCOPICAL TRANSPORT CHARACTERISTICS

In order to estimate the influence of the quasitraps
have performed several numerical experiments including
measurement of coordinate variances~Fig. 3!, of the Poin-
care recurrences distribution~Fig. 4!, and of the escape tim
distribution~Fig. 5!. Except for the measurements of the e
cape time distribution, the averaging was performed ove
3103 trajectories in a time interval of about 106 revolutions.
Initial conditions for this set were chosen within the chao
sea, outside of quasitraps, in the region of localized mot
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Since the period of revolution varies in different regions
the Poincare section, it is not a convenient characteristic
motion. The step of integrator is a more natural time varia
here as it naturally relates velocity and position:Dt

FIG. 1. Bifurcations. Coupling paramaterl50.15.~a! formation
of a hyperbolic fixed point atEf53.18,~b! the separatrix splits and
merges with the chaotic sea atEf53.31, ~c! side elliptical points
collapse atE.3.6, ~d! rotation of the 8-shaped separatrix inVyY
plane.
2-4
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FIG. 2. Levy walks of a tracer onXY plane for three different regimes:~a! before the second bifurcation,~b! after the second bifurcation
~c! beyond the third bifurcation. The distance is measured in unit cells~equal to 2p); the scale is the same forX and Y direction and is
indicated for each plot. Initial coordinates of the tracer (X5p, Y51.0, Vy50.0), and the time of computation (2.53106 steps of integrator!
are the same for all three plots. Total path lengths are quite close: 9.43104, 105, and 1.23105 cells.
s:
su

-

hi

o-

.

-

wer
5uDrWu/uvWu. A rough scale for the trajectories within theY qua-
sitrap is 23–25 steps/period.

The analysis of distributions yields the following result
~i! Direct measurement of the coordinate variance ver

time allows one to estimate the exponentm, for ^(r
2^r &2)&;tm,1<m<2. Linear extrapolation of the curve de
picted in Fig. 3~a! gives m51.7 in the interval 103.5–105.3

steps or, roughly, 102–104 revolutions andm51.9 in the
time interval 106.1–106.9 steps@Fig. 3~b!#. Beyond 106.9 steps
m monotonically decreases up to 1.4; we will discuss t
effect below.

~ii ! Poincare recurrence distributionF(t);t2g ~Fig. 4!

FIG. 3. Coordinate variances25^(r 2^r &)2& has its asymptot-
ics proportional totm; m can be different in different time intervals
Distance is measured in unit cells~equal to 2p), time is measured
in steps of integrator.Ef53.325, l50.15. The averaging is per
formed over 23103 trajectories during 2.53107 steps~about 106

revolutions!.
01111
s

s

also shows different exponents:g52.1 in the time interval
104.62105.3 steps@Fig. 4~b!# andg53.8 in the time interval
106.1–106.9 steps@Fig. 4~c!#.

~iii ! To deduce the exit time distribution exponentn,
C(t);t2n, we have chosen another three sets of initial c
ordinates, the first two having 33104 points and the last one

FIG. 4. Poincare recurrence distribution also has different po
asymptotics:F(t);t2g. ~a! full distribution, ~b! linear approxima-
tion of the short-time asymptote,g52.1, ~c! linear approximation
of the long-time asymptote,g53.8. The inset in~a! shows expo-
nential decay of the distribution up to 103.7 steps.Ef53.325, l
50.15. The averaging is performed over 23103 trajectories during
2.53107 steps~about 106 revolutions!. Initial conditions were cho-
sen within the region of chaotic localized motion.
2-5
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DMITRY A. RAKHLIN PHYSICAL REVIEW E 63 011112
having 43104 points. The initial points of the first set wer
located at the outer boundary of separatrix in the vicinity
the saddle point, within the interval@2.575,2.600# along Y
and within @0.33,0.35# along Vy on the Poincare sectionx
5p, x5mod(2p). Initial points of the second set were ch
sen within separatrix loops, but away from multilayered
lands ~inner quasitrap!: YP@2.74,2.76#, VyP@0.0,0.1#. The
last set covered an area@2.76,2.78#3@0.01,0.09# that lies in
the vicinity of the first~closest to separatrix! island chain.
Figure 7 shows the locations of these sets. Simulation c
tinued until all points left theY quasitrap. For the time inter
val 106.1–106.9 steps,n was found to be equal 3.5 for th
second and the third sets, and 3.4 for the first one. The e

FIG. 5. Escape time distribution for three sets of initial poin
Set 1: YP@2.575,2.6#, VyP@0.33,0.35#, 33104 points. Set 2:Y
P@2.74,2.76#, VyP@0.0,0.1#, 33104 points. Set 3: Y
P@2.76,2.78#, VyP@0.01,0.09#, 43104 points.~a! full distribution.
~b! linear approximation of the long-time asymptoteC(t);t2n, n
53.423.5. Ef53.325,l50.15.
01111
f

-

n-

or

of estimation is of order 0.1, which makes it reasonable
suggest equal asymptotics for all three sets. Figure 5 pres
the escape time distributions for all three sets.

Further analysis proved that different ‘‘short-time’’ an
‘‘long-time’’ behavior are caused by the sticking to outer a
inner quasitraps. One may wonder, why are we fitting
power laws on small intervals of data and distinguishing t
sets of asymptotics? The reason is that the inner and o
quasitraps are different in a sense that a variation of
model parameters changes their trapping properties and
pology independently. There is no renormalization group
tween these two quasitraps, and therefore obser
asymptotic variations are not the log-periodic corrections
some ‘‘averaged’’ asymptote, introduction of which wou
be meaningful for a renormalizable structure.~See, for ex-
ample, the study of trapping in the islands-around-island
erarchy @16#!. The next two subsections demonstrate th
short- and long-time asymptotics reflect individual trappi
properties of two different quasitraps.

A. Analysis of short-time sticking

The results of the simulations show that short-time sti
ing occurs in the vicinity of a separatrix, shown in white o
the density plot~Fig. 6!. The magnified fragment of Fig. 6 i
depicted in Fig. 7.

An underlying structure that controls the dynamics in t
vicinity of a separatrix is two homoclinic tangles, created
the intersections of stable and unstable manifolds of a hy
bolic periodic ~period two! point connected to itself. Two
consecutive primary intersections of the manifolds defin
lobe, and the lobes are responsible for the flux through
resonance. The resonance condition implies that the co
sponding angular frequencies admit a nontrivial integer co
bination which vanishes on some domain of the phase sp
In such cases one can apply a symplectic change of varia
which transforms the resonant combination of the phase v
ables into a new angle variable which slowly varies in t
neighborhood of the resonant domain. The evolution o
system, which has two different time scales in some loc
ized domain, can be conventionally analyzed using a sin
perturbation technique:

İ 52eDfH1~x,I ,f;e!,
~4.1!

ḟ5DIH0~x,I !1eDIH1~x,I ,f;e!,

.

-

d
s

m
–

s

FIG. 6. Density of trajectories within Y qua
sitrap. Ef53.325, l50.15. 103 initial points
were taken in the region of multilayered islan
chains. Simulation continued until all trajectorie
left the box (1.2,4.0)•(20.8,0.8). The number of
hits in each pixel of size 0.002•0.002 is color
coded according to the legend. The maximu
density is observed within the inner quasi-trap
the hierarchy of multilayered island chains.~See
magnified fragment of this structure in Fig. 7!.
Maximum number of hits in 1581. Resolution i
1400 by 800.
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whereH0 is the Hamiltonian of unperturbed system,eH1 is
the perturbation, periodic in variablef.

A well-known example of the application of such a tec
nique is a whisker map, which is defined to be the leadi
order approximation ine and H to the separatrix map. Th
separatrix map was introduced in@25# and was shown to
have peculiar properties such as a hidden renormaliza
group @13,14# and n-step periodic solutions@7,26#. Expan-
sion around these solutions revealed the existence of l
areas of stability, which were calledtangleislands. Though it
is correct in its description of some general properties,
separatrix map approximation falls short in its prediction
long-time characteristics of near-separatrix motion, as
map parameters quickly deviate from those of the origi
system.

Recently theenergy-phase methodwas developed@8#,
which provides a criterion for proving the existence of m
tipulse homoclinic orbits near hyperbolic-resonant, two d
gree of freedom Hamiltonian systems, which spend time
order log10(1/e) near the slow manifold on which the res
nance occurs. These are orbits negatively asymptotic to s
invariant set in the hyperbolic invariant manifoldAe which
enter and leave a small neighborhood ofAe of orderO(e1/2)
Ne times, then finally return and approach the invariant se
Ae asymptotically. The number of times an orbit approach
and leaves this neighborhood depends on thephase shift
along the slow manifold which, in turn, depends on para
eter of perturbatione. The distribution of the number o
pulses as a function of the phase shift is fairly stable at
Ne and becomes increasingly sensitive to small change
the parameters for higher number of pulses. This puts
limit of order O(1/e1/2) on the total passage time: followin
an individual orbit numerically beyond this limit is ex
tremely difficult. In the 2D system where the perturbation
‘‘self-induced,’’ the phase shift along the trajectory varie
making the spectrum ofNe-pulse orbits ‘‘continuous.’’ Sen-

FIG. 7. The distribution of trajectory density within multilay
ered island chains. Magnified fragment of Fig. 6 .
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sitivity to a small change in the parameters also means
the problem of finding the asymptotic behavior of trajec
ries becomes a singular perturbation problem. Nonetheles
can be addressed from the different viewpoint that utiliz
thefiberingof the stable and unstable manifolds by subma
folds consisting of initial trajectories that have the sam
‘‘asymptotic phase,’’ meaning these trajectories asymptot
the same orbit inAe50. Fibering allows one to view the
problem as a regular perturbation one. It was shown@27# that
fibers perturb smoothly ine1/2 and O(e1/2) close to unper-
turbed fibers. Fibers are invariant under the flow, i.e., fib
are mapped into fibers. This kind of solution is not amena
to Melnikov-type methods.

Our model is two-dimensional and is more complex f
the analysis than the one studied in@8,27#. Primarily this is
due to the fact that the perturbation is changing on the s
time scale. Nonetheless, the behavior of individual orbits
the vicinity of slow manifolds is still similar to one observe

in 1 1
2 system. To demonstrate this we have performed t

series of numerical simulations.
We have analyzed the pattern of motion of the traject

that originates from multilayered islands located within se
ratrix loops, crosses the separatrix and exits from the qu

FIG. 8. Trapped coordinate as a function of time for the sin
trajectory exiting from theY quasitrap.Ef53.325,l50.15. Initial
coordinates:~2.83, 0.225! ~vicinity of the third island chain! ~a!
wandering in the vicinity of the separatrix.~b! trajectory goes back
to islands.~c! trajectory exits the quasitrap. Time is measured
steps of integrator.
2-7
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trap ~Fig. 8!. Two conclusions can be drawn. First: motion
this region is highly correlated and can be represented b
modulated periodic function of period 4p as the period
doubles; the period of modulation tends to infinity as t
trajectory approaches the hyperbolic invariant manifold. T
period of modulation and the period of regular oscillatio
can be considered the two time scales that are used in
perturbative analysis. As the trajectory approaches the o
boundary of the quasitrap, the periodicity of modulation d
grades, and finally, the modulation disappears. The sec
conclusion is that the trajectory indeed approaches
leaves the vicinity of the invariant manifold several tim
before it finally exits.

In terms of perturbative analysis the estimations ofe led
us to the following. An unperturbed system can be viewed
two coupled pendulums involved in resonance energy
change: in the vicinity of the saddle points the energy of
X pendulum oscillates periodically between 3.325 and 2.
with period 4p, and the energy of theY pendulum oscillates
in the range 0.0–0.47 also with the period 4p. Total energy
is conserved and equal to 3.325. As expected, the ampli
of the energy exchange is proportional tol: 0.47/3.325
.0.15. On a Poincare sectionx52p unperturbed oscilla-
tions of theY pendulum would be represented by an inva
ant curve containing hyperbolic points of the perturbed s
tem. The last invariant tori corresponding to the reson
energy exchange between pendulums existed atEf53.31,l
50.15: it separated the separatrix from the external cha
sea. Thus, the upper boundary fore can be estimated a
3.32523.3150.015, or about 0.5% of the total energy.

The second series of numerical experiments demonstr
the existence of fibers around the separatrix and disp
their evolution. In this series we used two sets of initial co
ditions, located within the areaDY•DVy5(2.86,3.12)
(20.3,0.0) on Poincare sectionx52p, x5mod(2p) that
includes part of the stable manifold and its vicinity near t
hyperbolic fixed point. The 3.73105 initial conditions in the
first ~ordered! set were placed on the knots of the net of t
size n3m5Nset, while 105 points in the second~random!
set were distributed randomly and uniformly over the sa
area. The trajectories for the ordered set were computed
104 steps, and trajectories for the random set were comp
over 105.3 steps.

Figure 9~a! exhibits a deformation of the random s
along the 2D homoclinic manifold.X coordinate of consecu
tive mappings differs by 2p. We definedTf ast as a period of
time needed to cover this distance. Thus, Fig. 9~a! presents
evolution of the set after 55, 85, and 115Tf ast . Study of the
set evolution allowed us to draw the following conclusion

~a! The set stretches around the manifold forming a spi
The spiral does not self-intersect, its length grows with tim

~b! Consecutive mappings of the set are ‘‘enclosed’’: th
do not intersect each other.

~c! Minimal distance between the spiral and the hyp
bolic point decreases with time.

~d! Neighboring points stay close the for quite a few rev
lutions around the separatrix: the fine texture of~overlap-
ping! mappings shown in Fig. 9~b! lasts about 1000 steps o
(125)Tslow , whereTslow is a period of time needed to com
01111
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FIG. 9. The deformations of two sets of points along the
stable manifold.~a! three mappings of 105 points from the ‘‘ran-
dom’’ set.X coordinate of two consecutive mappings differs by 2p.
~b! magnified fragments of four~overlapping! mappings of 3.7
3105 points from the ‘‘ordered’’ set during their first passag
around the separatrix. Fine texture of mappings lasts abou
25)Tslow (103 steps!. In order to see this texture in the mono
chrome picture, mappings 1–7 depict every 7th, 5th, 3d, all tra
tories respectively.~c! distribution of the points from the ‘‘ordered’’
set after 104 steps. Poincare sections~a!–~c! are taken atX52p,
Ef53.325,l50.15.
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plete a revolution around the separatrix. LongerTslow is
measured closer to the separatrix. The fine texture also i
cates clearly the regions of extensive stretching.

The corollary of statements~a!–~d! is that any set of
points in the vicinity of the separatrix deforms to a spir
Different sets form spirals which, at a given time, can ha
different widths, lengths, and different ‘‘averaged’’ positio
on the separatrix. The longer the spiral the closer its ‘‘oute
end to the boundary of the quasitrap. For an exiting traj
tory at the boundary,Tslow andTf ast are of the same order

Mappings of the set which contains all points from t
e1/2 vicinity of the separatrix were called fibers in the earl
publications@9,27#. We have shown that fibers are shaped
spirals, and they are doubly asymptotic to the separa
Fibers can map on each other, but they do not intersect.

Thin fiber structure is visible until about 53103 steps for
the random set and at least until 104 steps for the ordered se
@Fig. 9~c!#. ~We did not compute the evolution of the order
set beyond 104 steps!. The mixing time in the quasitrap co
incides with the maximum of the exit time distribution~Fig.
10!. By that time only a small percentage of trajectori
leaves the quasitrap. We attribute the greater mixing tim
the ordered set to the existence of internal resonances re
ing the initial ordering of points. Polynomial long-tim
asymptotic for the random set is well defined in the inter
104.5–105.3 steps and equal to 1.1. This agrees very well w
Poincare recurrences asymptotic for the short-time trapp
@Fig. 4~b!#. In the same interval of timeg was found to be

FIG. 10. Escape time distribution for the second~random! set of
105 points trapped in the vicinity of the separatrix. Initial coord
nates were uniformly distributed within the areaYP@2.87,3.12#,
VyP@0.0,20.3#, X52p. ~a! full distribution, ~b! linear approxima-
tion of the short-time asymptoteC(t);t2n, n51.1. Time is mea-
sured in steps of integrator.Ef53.325,l50.15.
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equal to 2.1. The relationshipn5g21 is discussed below
Our estimation of the escape time for the random set (13.7

.5000 steps! agrees well with the Poincare recurrences d
tribution @see inset in Fig. 4~a!#: at times shorter than 103.7,
the distribution is purely exponential. Since the initial cond
tions for the Poincare recurrences distribution were ta
outside of the quasitrap, the exponential part consists
those points which were not trapped at all. Observed esc
time 103.7 steps approximately equal to 200Tf ast
.(1/e)Tf ast . The averageTslow for both sets was about 43
steps or 16Tf ast . Thus, the escape time is also approximat
(1/e1/2)Tslow , wheree5531023. Notice, however, that the
period of slow motion varies significantly with the distan
from the separatrix. The difference inTslow across the whole
quasitrap is a least an order in magnitude—from about 103 to
less than 102 steps.

B. Analysis of trapping statistics

To relate the exponentg for the Poincare recurrence dis
tribution to m, where^(r 2^r &)2&;tm we employ arenewal
process formalism, one of the methods describing theone-
flight approximation@19,28#. The formalism is based on th
use of the velocity autocorrelation function

C~ t !5^v~ t !•v~0!&52^vx~ t !vx~0!&, ~4.2!

of random walker which performs statistically independe
free paths moving with a constant velocityv0. The durations
T of these paths are distributed asC(T);T2g, whereC(T)
is the probability density function. Results are applicable
T@Tlocal , whereTlocal is the characteristic duration of th
localized motion. In the second equality in Eq.~4.2! we have
used the square symmetry of our system and the fact that
paths of durationT in negative or positive directions hav
equal probability.̂ & represents time averaging.

We briefly outline the derivation of this formalism as w
will need modify it for the case of nonconstant velocit
described in the next section. Assumptions about tracers’
havior are met in our setup, since trajectories for the Po
care recurrence distribution start and end up in the ph
volume, located outside of quasitraps, and the motion in
volume is localized. Thus, the long flights occurring in t
vicinity of the separatrix can be deemed statistically indep
dent. The span of flight durations (103.7–105.3) is much
greater than the average time of localized motion, which is
order 10223 steps. Although a tracer trapped in the vicini
of the separatrix does not move with uniform speed, it
sufficient to use its average velocity asv0. Indeed, the ve-
locity in the vicinity of the separatrix can be approximat
by a modulated periodic function with period much smal
than the minimum flight duration at which out rando
walker formalism is valid. The period of modulation is infi
nite on the separatrix, and decreases at the periphery o
quasitrap. However, as we have roughly an equal numbe
flight crossing~or reflecting back from! the separatrix from
both sides, one can introduce an average amplitude of
velocity. The reason why we expect equal influx from bo
sides, is that the characteristic transit time through the o
2-9
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quasitrap is much less than that through the inner o
Equivalently, the probability that a trajectory which pe
etrated the outer quasitrap from outside will reenter it aga
is much higher than the probability that it will be trapped
the inner quasitrap.

The flight of durationT alongX gives the following con-
tribution to the correlation function:

C~ t !;E
0

`

v~ t1t!v~t!dt

5E
0

T2t

v~ t1t!v~t!dt

5v0
2~T2t !, ~4.3!

which simply manifests that fort<T the contribution of this
single path toC(t) is proportional to the length of the inter
val in which the correlation between timet andt1t is pos-
sible.

Using probability density function for the flight duratio
distribution and normalizing the correlation function one o
tains

C~ t !5
v0

2

^T&ET

`

~T2t !F~T!dT, ~4.4!

where the statistical independence of flights has been us
Only single paths between 0 andt contribute to the cor-

relation function above. The word ‘‘single’’ is used for path
that consist of the following three phases: wandering in
chaotic sea outside of a quasitrap within the region of loc
ized motion, correlated motion in a certain direction within
quasitrap, wandering in the chaotic sea again.

Complex flights consisting of two or more paths have
equal probability of ending up with positive or negativ
speed and do not contribute~for more details, see@28#!. Gen-
erally, this assumption does not work for the case of gra
ally increasing velocity, considered in the next sectio
Nonetheless, one can still resort on the argument that f
given total flight duration, a single flight is more probab
Indeed, if for largeT the probability of being trapped once
proportional toT2g, then the probability to reenter the qu
sitrap decays as*0

t t2g(t2t)2gdt;t22g11.
In addition we have used the following technique to d

regard complex flights: since there is no clear boundary
tween the chaotic sea and the outer quasitrap, we have
sumed the flight is single, if it does not reenter the box t
includes this quasitrap, and that part of the chaotic sea w
the direction of motion is the same as in the quasitrap. In
assumption above, such a flight can be qualified as sing

Denoting the Laplace transforms ofC(t) and F(T) by
C̃(s) andF̃(s), Eq. ~4.4! turns into

C̃~s!;
1

s
1

1

^T&

F̃~s!21

s2 . ~4.5!

Using the relationship between the mean-square displ
ment and correlation function:
01111
e.

,

-

d.

e
l-

n

-
.
a

.

-
e-
as-
t
re
e
.

e-

s2~ t !52E
0

t

~ t2t!C~t!dt, ~4.6!

whose Laplace transform iss 2̃(s)52s22C̃(s), one can get

s2~ t !52L21$s231^T&21s24@F̃~s!21#%, ~4.7!

whereL21 is the inverse Laplace transform. To obtain lon
time asymptotics one should consider smalls behavior. For
the case of interest 2,g,3, the calculations yield:s2(t)
;t42g or m1g54.

For intermediate asymptotics in the time interval 104.6–
105.3 steps, corresponding to trapping in the vicinity of th
separatrix, we have obtainedg1m52.111.753.8, which
agrees well with the one-flight approximation.

We emphasize again, that the obtained relationship
tweenm andg is not a unique result of the outlined forma
ism. This result was first derived in@29# under a different
initial formulation and restrictions. Later there were dev
oped ‘‘jump’’ @18# and ‘‘velocity’’ @30# versions of the
continuous-time random-walk description. Though both v
sions produced the same relationship betweenm andg, the
jump version was found deficient in its description of velo
ity power spectrum asymptotics. The ‘‘velocity’’ model wa
later generalized to allow the velocity to vary from flight
flight, according to a given probability density function@31#.
The reason for the use of the renewal process formalism
that its assumptions can be adequately justified. The form
ism can also be easily generalized to be applied to the
cific case of nonuniform velocity, as is done in the ne
section.

C. Transport across multilayered island chains

Long flights, contributing to the tail of the distribution
reside mostly on theinner quasitrap—that is what we hav
called the hierarchy of multilayered islands, surrounding t
side elliptic points. Figure 7 shows a close-up view of th
structure with five well-defined layers, the sixth is destroy
Each layer has the same number of islands, the first, sec
and fourth layers have a self-similar subisland hierarc
Figure 7 demonstrates that, except for the aforementio
hierarchical structures, the inner quasi-trap is almost u
formly dense, providing long trapping times. Trapping
hierarchical structures of the fourth chain is a possible rea
for low density at the last~fifth! layer. After a careful exami-
nation we have concluded that characteristic accessib
times to the higher generations of islands in hierarchi
structures are larger than the time of our computations.
indication of this can be seen on Fig. 3~b!: the exponentm
for a coordinate variance asymptotic decreases monot
cally beyond 107 steps either to a new value or to one, that
the case if the accessibility time to a second generatio
higher and all other sources of effective trapping are
pleted. Asymptotics obtained for time less than 107 steps, are
not therefore affected by the presence of self-similar str
tures, and we can exclude these structures from consi
ation.
2-10
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For quasitrapping on island chains, the exponentsg andm
for escape time distribution and coordinate variance can
related in a similar way, shown in the previous section. Ho
ever, we can no longer assume a constant velocity of tra
as we did above. The velocity is still a modulated perio
function. But its amplitude, averaged over the period
modulation, increases as the tracer penetrates deeper in
land layers. Given the fact that stickiness across the in
quasitrap is almost uniform, one can suggest that lon
flights penetrate deeper toward the most inner island ch
Thus, we expect longer flights to have higher average ve
ity. Figure 11 presents the correlation of the average velo
with the flight length. To relate the growth of the avera
velocity to the properties of islands, one has to make cer
assumptions about the transition rates between island ch
and their scaling properties. We were puzzled by the pecu
grouping of points on Fig. 11 and have verified that ea
group of points corresponds to the trapping on particu
island chain. One must admit, though, that observed poly
mial growth can result from averaging over many contrib
ing factors, not the least of which might be a multifrac
behavior of individual islands within chains.

For now we simply use the result presented in Fig. 11 a
set thatv;v0ta, a50.8060.05. Then the contribution o
flight durationT will be

FIG. 11. Average velocity of tracers within multilayered islan
chains as a function of trapping time. The dependence is assum
be in the form^Vx&5V0x1aTa, a50.8060.05. Averaging was
performed over 103 trajectories.
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C~ t !;v0
2E

0

T2t

ta~ t1t!adt

5
v0

2

11a
Ta~T2t !11a

2F1S 2a,1,21a,12
t

TD .

~4.8!

2F1( ) is the hypergeometric function.
The reasoning is exactly the same as when calculating

contribution of a single flight in the case of constant spe
The expression above converges anywhere on the circt
<T. Above we were able to obtain Laplace transform of t
correlation function without specifying the explicit form o
the flight distribution function. This time we have to rever
this order to simplify our task. We assume the same form
escape time distribution as was used in the original der
tion of the renewal process formalism@32#: F(T)5A(B
1CT)2g, with normalizationAB12g/C(g21)51. For sim-
plicity we assumeB5C51, A5g21. Thus,

C~ t !5
v0

2A

^T&~11a!
E

t

`

Ta~T2t !12a

3 2F1S 2a,1,21a,12
t

TD ~11T!2gdT. ~4.9!

After a few algebraic transformations this integral can
taken by parts, yielding

C~ t !5
v0

2A

^T&

G~11a!G~2222a1g!

~g21!G~212a1g!
t112a~11t !12g

32F1S 11a,211g,212a1g,
1

11t D ~4.10!

valid if (g22a).2. The variance can still be written in th
form ~4.6!. After performing the integration and taking th
limit t→`

to
s2~ t→`!5
2v0

2A

^T& H G~11a!G~2422a1g!

~g21!G~212a1g!
t412a2g, 212a,g,312a

2
G~212a!G~2322a1g!

~11a!G~g!
t, 312a,g.

~4.11!
en
w is

et
At a50 the formula reduces to the result of the previo
section.

In the time interval 106–106.9 steps, where we associa
with the quasitrapping on the sticky layers of island chai
we havem51.9060.05, g53.7560.1, n5(3.423.5)60.1,
depending on the set anda50.8060.05. Thus, the relation
s

,

ship m5412a2g5411.623.7551.85 satisfies this.
At this point we have to explain the difference betwe

Poincare recurrence and escape time asymptotics. Belo
an excerpt from the work of Meiss@33#. According to the
author the exit time probability distribution for the entry s
I is the probability that a trajectory inI will have a given exit
2-11
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time:

Prob„t1~ I !5 j …5
m~Tj !

m~ I !
, ~4.12!

wheret1(I )5tA→M\A(I ) is exit time,A,M andI ,A is the
incoming set with backward exit time 1.Tj is part of the
incoming set with exit timej. If set A is chosen so that the
characteristictransit time for it is much longer than the cha
acteristicaccessibilitytime of the entry set ofA from some
subset ofM\A, then the asymptotic for escape time for en
set must be equivalent to the asymptoticg for the Poincare
recurrences distribution for that subset ofM\A.

For theaccessiblesetAacc,A

Prob„t1~Aacc!5k…5
1

m~Aacc!
(
j 5k

`

m~Tj !, ~4.13!

which is the same as the survival probability forI up to
normalization. Similarly the transit time probability is

Prob„t transit~Aacc!5 j …5
1

m~Aacc!
(
k50

j 21

m~Tj !5 j
m~Tj !

m~Aacc!
.

~4.14!

These equations imply that ifm(Tk);k2b, b.2, ask
→`, then

Prob„t1~ I !5k…;k2b

~4.15!Prob„t1~ I !>k…;Prob„t1~Aacc!5k…

;Prob„t transit~Aacc!5k…

;k2(b21),

which means thatn5g21 for escape from the accessib
set. The same result under a different approach was obta
in @34#. Our measurements of escape time and Poincare
currence asymptotics for the trapping in the outer quasi
confirm this relationship:g52.1 andn51.1. In the case of
the inner quasitrap, however,g53.7560.1 and n5(3.4
23.5)60.1 ~e.g.,n varies between 3.4 and 3.5 for differe
sets and the precision is of order 0.1!. The explanation is as
follows. For the outer quasitrap the characteristic mixi
time (103.7 steps for the random set which was used to co
pute the escape time distribution! is less than the minimum
time at which the polynomial decay begins. Thus, we ha
computed the escape time distribution for the accessible
which is the whole quasitrap. This is not true for the inn
quasitrap: the mixing time is much greater there and the
fore the escape time distribution was computed for sm
subsetssi,Aacc . In this case it is easy to see that

~1! if all points of si belong to different trajectories tha
start on the incoming set, AND

~2! if the span between the shortest and the longest t
intervals needed to reach points ofsi from the incoming set
~accessibility time! is much less than the characteristic tim
at which the asymptotic behaviort2g is observed,
then the escape time asymptotic for setsi is equal tog.
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Violation of the first condition means that one counts
single trajectory several times. This would lead to an asym
totics less thang and, in the limitsi[Aacc , would produce
an asymptoticg21. Violation of the second condition would
produce a greater asymptotic as one fails to account for l
pieces of the trajectories. The particular choice of subsetsi
suggests that the second condition is being held as all t
sets are located within the outer quasitrap where the tra
time is known and is much less than that for the inner q
sitrap. The first condition is violated, probably because
subsetssi were initially ordered. The previous section dem
onstrates how the ordering affects the escape time statis
That would explain the departure of obtained escape t
asymptotics fromg or g21.

V. CONCLUSION

The fine structure of the stochastic layer was alway
problem of great interest and became more significant as
problem of anomalous transport in dynamical chaos arose
different applications. In this paper we have analyzed
phase-space dynamics in the vicinity of two-dimensional
perbolic slow manifolds. This structure is thought to be
sponsible for the long trapping in islands-around-island h
archies and multilayered resonant island chains~the layers of
the whiskered hyperbolic tori created in the destruction
resonant KAM tori in nearly integrable Hamiltonian sy
tems!. A general global perturbation theory for such stru
tures does not currently exist even for one-dimensional s
tems. A rigorous analysis of two-dimensional Hamiltoni
systems is trickier because the ‘‘self-induced’’ perturbati
generally have a wide Fourier spectrum.

We have shown that in a particular model trajectories
the vicinity of the slow manifold form a hierarchy of thi
submanifolds known as fibers. We have shown that fibers
shaped as spirals, and that they are doubly asymptotic to
slow manifold. Fibers map on each other, but do not int
sect.

Generally, the observed picture coincides with the o

predicted for 11
2 systems@27#. We have shown that the cha

acteristic trapping time in the vicinity of the slow homoclin
manifold is about (1/e)•Tf ast ~period of perturbation! and
(1/e1/2)^Tslow&, where^Tslow& is the averaged period of slow
motion around the separatrix. The width of the quasitrap a
consequently, the variation ofTslow within it are much big-
ger than those assumed in the earlier studies of lo
dimensional systems@8,27#. We estimate that for an exiting
trajectory at the boundary of the quasitrap,Tslow and Tf ast
are of the same order. Further study is needed to verify
dependence of the trapping time one for different values of
perturbation.

As was discussed in the introduction, the results obtai
for our model are applicable to other 2D systems with
similar type of resonance. Another fact allows us to sugg
even broader applicability: our simulations show that t
near-separatrix orbit dynamics observed in our model
similar to one predicted for lower dimensional system
However, in terms of the topology of the phase space,
original studies of one-dimensional Hamiltonian systems
2-12
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sumed only the existence of a resonant homoclinic manifo
@8,27#. It implies that any 2D near-resonance Hamiltonia
whose reduced 1D counterpart has a homoclinic struct
might exhibit similar phase-space dynamics in the vicinity
resonant manifolds.

We have concluded that renewal process formalism
be applied to the case of a velocity that is not constant du
the flight, but rather oscillates around the median with
average period of oscillations much less than the duratio
the flight. This is not surprising, though, because the aver
velocity is limited within a certain interval defined by th
total energy and by the location of the quasitrap, and for
given flight length only nonsymmetry in the probability di
tribution function for an average velocity would affect th
coordinate variance asymptotic. This would be, howeve
higher-order correction.

We have shown that macrotransport characteristics
LSSL’s are indeed highly susceptible to small changes
parameters and that this effect is related to the existence
the evolution of trapping structures within the chaotic s
Practically, our model can be realized and long flights can
detected, at least those with length up to 102–103 unit cells,
corresponding to the trapping in the vicinity of the sepa
trix. The usual technique that can be applied is the anal
of the velocity power spectrum, which can be directly o
tained from measurements of conductivitys(v) in the far-
infrared and microwave range. Anomalous regimes will
reflected by a power-law increase asv→0, which will hold
up to crossover frequencyvcr;1/tcoll , defined by the scat
tering on impurities. The upper limit of the power-law r
gime is given by the harmonic frequencyv0 of the superlat-
tice potential. In pure systems with mobilities in the ran
106 cm2/V s crossover frequency is of the order ofvcr;3
31010 @35,36#. A typical carrier densityN;231011 cm22
dt

,

z-

ev

v
T.
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corresponds toEf510 meV. To reproduce the regime stu
ied in our model, one has to make the modulation poten
of order V053 meV. Corresponding harmonic frequenc
v05(2p/a)(V0 /m)1/2;331012 for a5200 nm. The mag-
netic field which corresponds tol50.15 is B;0.5T. This
simple estimation yields a modest span of order 102 cells.
There is evidence, however, that for chaotic systems w
finite-size quasitraps, the effective lower limit crossover f
quency is, actually, lower than 1/tcoll because the mobility is
limited primarily by small-angle scattering which may o
may not oust a particle from a quasitrap. In experiments@37#
on magnetoconductance fluctuations in ballistic microstr
tures, which were shaped as a stadium and a circle, a
polynomial tail in the power spectrum for the circle persist
up to lengths of at least an order more than the measured
path length. The authors in a later study of the effects
random noise on magnetoresistance@38# demonstrated tha
in some ranges of parameters scattering does not destro
polynomial tail. Their model of random noise, howeve
could not fit the experimental data@37#; it either killed the
polynomial tail at a high level of noise or gave a significan
slower decrease in the exponential part of the spectrum. T
disagreement is probably an indication of prevailing sma
angle scattering in the experimental system.
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